
October 2007

GETTING
TOASTY
LOOK OUT SOUTH AFRICA! RETROTOAST
ARE HITTING THE SCENE!

ANOTHER

40 PAGES
OF CONTENT

THIS ISSUE!

TUTORIALS

REGULARS

FEATURE

OPINIONS

REVIEWS

DESIGN

TAILPIECE

Ed’s note 03

From the net ... 04

Retrotoast Studios 07
We get in touch with South Africa’s newest arrivals on the game development scene

Thinking with portals 10
Q-man speculates, cogitates and deliberates. What is Portal’s effect on our lives?

The White Chamber 12
A sci-fi horror for the point-n-click enthusiasts out there

Sprout 13
A charming hand-drawn adventure

Frets on Fire 14
The free and funky alternative to Guitar Hero

Blender — intermediate series 15
Try your hand at creating some 3D buttons!

Beginner’s guide to making games 18
This month’s tutorial helps out with important concepts such as score and health

Game graphics with photoshop 21
The second part of the series, dealing with vector-based sprites

Project — Mini#37 25
A team from Luma explain what it took to make a professional-class racing game

Coding Etiquette 31
This month’s article deals with style docs and programming effectively as a team

The history of I-Imagine 32
The concluding instalment of our series on these local game developers

Unleashing the rAge 36
What happened at rAge 2007? Browse through our photo gallery and find out

02DEV.MAG ISSUE 17

EDITOR

Rodain “Nandrew” Joubert

DEPUTY EDITOR

Claudio “Chippit” de Sa

SUB EDITOR

Tarryn “Azimuth” van der Byl

DESIGNER

Brandon “Cyberninja” Rajkumar

MARKETING

Bernard “Mushi Mushi” Boshoff

Andre “Fengol” Odendaal

WRITERS

Simon “Tr00jg” de la Rouviere

Ricky “Insomniac” Abell

William “Cairnswm” Cairns

Bernard “Mushi Mushi” Boshoff

Danny “Dislekcia” Day

Andre “Fengol” Odendaal

Luke “Coolhand” Lamothe

Rishal “UntouchableOne” Hurbans

WEBSITE ADMIN

Robbie “Squid” Fraser

WEBSITE

www.devmag.org.za

EMAIL

devmag@gmail.com

THIS MONTH’S
GUEST WRITERS:

Quinton “Q-man” Bronkhorst

James “NightTimeHornets”
Etherington-Smith

This magazine is a project of

the South African Game.Dev

community. Visit us at:

www.gamedotdev.co.za

All images used in the mag are

copyright and belong to their

respective owners.

Now you’re thinking in portals.

And, erm, game development.

REGULARS

03DEV.MAG ISSUE 18

DEAR READER ...

The rAge expo this year has come and gone, leaving most of us exhausted. Of course, we only

get a brief breather period before hitting the workmill again. Interesting news has been pouring

in from all sides this month, quickly filling our little bucket of content and forcing us to send

people to hunt down some more containers.

Revolting metaphors aside, we really do have quite a few interesting things to blab this month.

First off, we’re pleased to announce the recent success of Retrotoast Studios, a group of local

developers who have just published their first game — after already winning R5 000 from Mind-

set in Game.Dev’s Comp 15. Not only have they just set up their website and released the game

to the buying market, but they kindly agreed to an interview while at rAge this year. Dev.Mag

spoke with Cadyn Bridgman and Louis Pieterse for a few minutes about the company and their

plans for the next couple of months, and the full report can be found in this month’s feature.

Another juicy piece of content is the 6-page monster in this month’s design section, graciously

provided by the folks at Luma. Their strong presence at rAge this year is a result of their success

with Mini#37, an arcade racer that has raised the bar for South African developers everywhere.

Finally, the mag has undergone some more experimentation with design and content in this

issue. Most of it is rather subtle, and sometimes it’s just individual articles which are played

around with. But changes, expansions, cuts and random nosepicks have indeed been made, and

we need feedback on it all. Be sure to comment on anything that strikes you as particularly

good or revolting in this edition so that we can keep it or scrap it! Our e-mail address is, as

always, advertised in the right column of this page.

That’s all for now. Enjoy this edition, and don’t forget to write to us!

RODAIN “NANDREW” JOUBERT
EDITOR

A little while back, we did a review of

Narbacular Drop. This game was the spir-

itual predecessor of Portal, created by the

same team while they were still students

at Digipen. If you’re interested in seeing

the title that sparked off a gameplay revo-

lution, check out the original website at

http://www.nuclearmonkeysoftware.com/

REGULARS

04DEV.MAG ISSUE 18

FLASH VERSION OF PORTAL

http://portal.wecreatestuff.com/

Looking for a bit of light entertainment between tasks? Try this nifty

little 2D Flash version of the hit game Portal, lovingly crafted and

professionally executed by its creators. It has 40 levels and carries

over most of the material from the original game,

give or take some items depending upon the

particular demands and limitations of a two-di-

mensional environment. If you don’t mind the

inevitable loss of gameplay depth that accompa-

nies the loss of the game world’s depth, throwing

portals around can prove to be an entertaining

pastime even in the realm of Flash.

RETROTOAST UP AND RUNNING

http://www.retrotoast.com/

If you’re keen on supporting local game development, then it wouldn’t hurt to stop on

over at the new Retrotoast site that’s been set up to help promote their first

published game, Cartesian Chaos. An educational game

that has proven itself to actually be more

fun than facts — something which is dif-

ficult to pull off properly nowadays — CC

doesn’t rest on hope and fancy. It also

proved its worth by coming first place in a

recent Game.Dev competition. More details

in this issue’s feature.

SHARING IS CARING IN GAME DESIGN

http://lostgarden.com/2005/08/why-you-should-share-your-game-designs.html

If you’re looking for an interesting read,

head on over to Lost Garden for an essay

on game design that says you should -

gasp!- share your ideas with other people.

Most people’s first instinct when it comes

to design is that ideas should be guarded

jealously – if you give the premise away

too early, somebody else could rush in

there and snatch your intellectual proper-

ty. This article provides several convincing

reasons as to why that is not necessarily

the case, and why developers should be

more open with their musings.

REGULARS

05DEV.MAG ISSUE 18

GAMEDEV.NET 4E COMPETITION STARTS

http://www.gamedev.net/community/contest/4e6/

Gamedev.net’s prestigious annual competi-

tion, known as Four Elements (or simply 4E by

aficionados) has reared its head this year for a

sixth incarnation, this time with some very in-

teresting ideas up its sleeve. This competition’s

distinguishing characteristic is the fact that all

games created must deal significantly with four

provided elements, either physically or themati-

cally. This year’s elements? Ponies, accountants,

crystals and explosions. More details about the

competition can be found on the site.

INDEPENDENT GAMES SUMMIT RELEASES VIDEO SERIES

http://www.gamasutra.com/php-bin/news_index.php?story=16042

If you’ve got the bandwidth for them (and Quicktime

Alternative), be sure to download all the Independent

Games Summit (IGS) panels and speeches that are being

released on video at the moment. They’re just over

100megs each (some are a little bigger) but they’re

well worth the watch. One of these videos, provided

in the link, focuses on Kim Swift of Valve talking

about indie game development, Narbacular drop and

getting hired by Valve to make portal. Videos can

also be found at http://www.indiegamessummit.com/

ZERO PUNCTUATION, ZERO SHAME

http://www.escapistmagazine.com/articles/view/editorials/zeropunctuation

It’s not strictly game development, but it’s a great way

to relax while poking fun at the design flaws of the AAA

titles out there. Ben “Yahtzee” Croshaw is a cynical,

wisecracking British-Australian with a penchant for ripping

off games with the use of some hilari-

ous videos. Interestingly enough, he’s

also the creator of some well-known

AGS games such as 5 Days a Stranger,

so once you’ve wiped a tear away after

laughing hysterically at his videos, it’s

a good idea to go check his projects at

http://www.fullyramblomatic.com/

REGULARS

06DEV.MAG ISSUE 18

YOYO GAMES LAUNCHES FIRST OFFICIAL COMPETITION

http://www.yoyogames.com/gamemaker/competition01

Five weeks, and you need to make a game themed around winter.

Easy, right? Well, yes! Play your cards right, and you may also win

prizes of up to US$1000. The Yoyo Winter Competition is

Yoyo Games’ first official comp, with a flexible premise

and easy game creation using the Game Maker de-

velopment tool. Moreover, entrants are allowed to

submit two games apiece, increasing their chances

of winning if they have multiple creative

ideas. The competition ends at midnight

on 23 December, so be sure to get

cracking! More details on the site.

BLOGGING IT UP WITH MINI#37

http://www.garagegames.com/blogs/70158/13826

For those interested in keeping up to date with the progress on Luma’s arcade racer,

Mini#37, check out Dale Best’s blog on Garage Games. The game has already been met

with some very high praise from readers, and even the actual GG staff have allegedly

given the game the thumbs-up. Mini#37 runs on the Torque Engine, created by Garage

Games, and is an upstanding example of what can be done with the tool in the hands of

professionals. For more details

on Mini#37, turn to the

6-page postmortem in this

issue’s Design section.

STORYTELLING FOR THE DEVELOPER

http://www.escapistmagazine.com/news/view/

70852-Next-Gen-Storytelling-Part-One-What-Makes-a-Story

Some developers out there are huge proponents of inter-

active storytelling (one of our writers is a vicious Deus

Ex fanboy for that very reason). If you browse through

The Escapist after watching Zero Punctuation, then you

may come across an awesome series on storytelling in

games written by the man himself, Warren Spector. If you

haven’t, then here’s the

link for you. Read it if

you aspire to tell stories

through their games

somewhere down the

line. Do it. Do it now.

FEATURE

07DEV.MAG ISSUE 18

RETROTOAST STUDIOS
South Africa’s latest success story

by Rodain “Nandrew” Joubert

It’s rAge 2007. We’re sitting down to

have a couple of drinks at Northgate’s

Wimpy, making the most of these few

free minutes between presentations and

prizegivings. There’s not much time for an

interview, so the little recording device is

flicked on almost immediately, and the mike

gets shoved under the nose of two men who

may very easily become the next big thing in

South African game development.

“Wait a minute, we need some beer first!”

I’m sitting down with Cadyn Bridgman and

Louis Pieterse from Retrotoast. They’re part

of a small team (which also includes ‘visual

angler’ Daniel Petroff) responsible for bring-

ing the world Cartesian Chaos, an educa-

tional game that earned them R5 000 — and

later a publishing deal with Savage Software

— when they claimed first place in a recent

Game.Dev competition. The premise of Comp

15 was simple enough – through Game.Dev,

Mindset sponsored a huge prize pool of R10

000 to make an educational game that would

not only help people learn, but actually let

them have stacks of fun in the process.

Claiming first place, the Retrotoast team

were given an unprecedented opportunity

to market their creation. Their publishing

deal with Savage has had them working away

furiously ever since it was officially confirmed

– the goal being to tout their product to a

mainstream audience.

As far as the toasters are concerned, this is

all they need. “Sure, money’s nice,” Cadyn

says. “We generally use what we’re earning

right now to pay for business costs such as

software licenses and web hosting. But we

The jolly Retrotoast crew at rAge 2007. Note the sinister red eyes. And the giant cheque
from Mindset. Present are (from left to right) Daniel Petroff (artist), Cadyn “Evil_Toaster”
Bridgman (project manager / programmer), and Louis Pieterse (systems / management).

FEATURE

08DEV.MAG ISSUE 18

also enter competitions for inspiration.” He

sips his beer. “And discipline.”

Cadyn has been involved with game devel-

opment for a while, making his first con-

siderable mark on the local scene with his

management title, Fast Food in Space, which

took first place in last year’s major Game.Dev

competition. It was shortly after this project

that the idea of Retrotoast came into being,

and he’s been working on it with his team

ever since.

The Retrotoast squad make extensive use of

free and open source software for their crea-

tions. Moreover, all of their games run on a

custom system known as the Toasted Engine,

which constantly undergoes refinement

— Louis volunteers an explanation of this.

“When Fast Food in Space was made a while

back, the engine was this crap.” He makes

a small space between his hands. “Now it’s

THIS crap!” he continues, throwing his arms

wide open. “Crap means good, by the way.”

A knack for creative endeavours combined

with a keen work ethic and marvellous sense

of humour easily put Retrotoast on a par with

professional indie developers. In fact, not

only do Retrotoast produce quality games,

but they have the drive to back it all up. “We

have a game plan,” Cadyn explains. “It’s not

a case of ‘let’s make games and become rich

and famous’. We’ve got a marketing scheme,

we’ve got a list of goals and we’re working

towards them realistically.”

The next six months in their game plan are

simple – promote their newly published Car-

tesian Chaos, get their website fixed up, and

minimise expenditure so that the focus can

move towards churning out games. Another

current project of theirs is RetroTank, which

Cadyn hints at possibly being Retrotoast’s

next commercial venture.

Although the Retrotoast guys don’t have an

enormous amount of time to commit to com-

munity involvement, they do see the value of

game development groups such as Game.Dev.

“Sponsorship, awareness and community,”

are what they describe as the main perks,

not to mention the raw cash that they’ve

won by participating in local competitions.

With their game release just around the cor-

ner and a lot to look forward to, Retrotoast

serve as a great example of what small-scale

developers can actually achieve in this coun-

try. Their advice to other keen developers?

Start small. Don’t be lazy. Have a game plan.

“And most importantly,” Cadyn says, “always

ask for a beer when somebody wants to inter-

view you.”

The crew have just recently set up their

website, so if you’re curious about any-

thing concerning Retrotoast, or would like

to order a copy of Cartesian Chaos, check

up on http://www.retrotoast.com/.

The publisher, Savage Software, can be

found at http://savagesoftware.com.au/

FEATURE

09DEV.MAG ISSUE 18

OPINION

10DEV.MAG ISSUE 18

it has sparked a completely new way of thinking for people to engage

in. We’ve all opened up the Orange Box and reveled in the pure,

untainted awesomeness and ingenuity that is Portal. We’ve been

‘flinging’ ourselves across test chambers, falling into pits of sludge,

and incinerating our weighted companion cube friend after it tried to

warn us that the cake was a lie. But we didn’t listen. We never listen.

Wait, what?

Moving swiftly along: Portal has opened up a entirely new way of

thinking for many of us and, were the portal gun a reality, could

make our lives simpler, far more enriching and downright entertaining

- apart from the generic (read: filthy) uses of the portal gun, including

spying on the ladies’ locker rooms or [insert another suitably risqué

use in here].

Let’s try really hard here to get our heads out of the gutter for a few

seconds, and imagine how portals could assist us in those every-day,

realer than real, situations in life. Like when ninjas attack you in the

middle of a lecture – using portals to escape the most agile of people

and sneak up on the sneaky to greet them with a decent stab to the

eye is far more awesome than the usual shlep of having to dodge

shuriken and ninja blades. In a far more unrealistic situation, just

think how handy it would be to use portals to get your keys which you

so absent-mindedly locked in your car. Or space shuttle.

Endless slides, eternal roller-coasters, quick transport to and from

various locations, or even an everlasting free-fall (which you can end

with a sudden stop – and subsequently, death). Communication face-

to-face over huge distances, interaction [naughty] to [oh dear] over

huge distances! Whatever tickles your fancy, the concept of portals

stretches your mind enough to realize that the world you’re currently

by Quinton “Q-man” Bronkhorst

“Thinking with portals”

is a revolutionary gaming concept. Not

only does it open entirely new avenues

of gameplay for the average user, but

living in sucks on so many levels!

And that it would be far cooler

THE WHITE CHAMBER
http://www.studiotrophis.com/

REVIEW

12DEV.MAG ISSUE 18

by Simon “Tr00jg” de la Rouviere

When I first heard of The White

Chamber, I thought it would be

some strange scientific action

game. It turned out to be strange, and

slightly scientific. It also turned out to be one

awesome indie adventure game.

The White Chamber was developed by Studio

Trophis. It takes place on a space station. It

starts rather innocently, with the main char-

acter - a woman with huge purple hair – wak-

ing up in a coffin without any memory why

she would be in there. Okay, it’s not quite

that innocent, but you will quickly see why.

After realising that you are in a deserted

space station, you do what any intrepid

adventure gamer would do: explore it

fearlessly. You nonchalantly prance

around the space station until the

first “trippy” sequence. You do not

expect it at all! By “trippy”, we

mean horrific and bloody images.

Then, as quickly as it comes, it vanishes.

So now, Studio Trophis created a perfect

atmosphere. You are always scared when

re-entering any room for fear of

something trippy happening. From

there on, the game catapults

you on a mind-bending

journey into dis-

covering why you

don’t remember

anything and why

no-one is alive.

The story is brilliantly conveyed through

strategic “video” discs scattered around the

space station. You finally discover what it is

all about, and it is a real shocker.

The White Chamber is a spectacular example

of indies pouring their heart into a game. The

graphics are splendidly done, and the story,

which is a cross between Solaris and Silent

Hill, is gripping.

The music combined with the art creates a

haunting atmosphere.

Although the game is a bit short (1-3 hours)

and easy, it is done so for a reason. There

are only a few rooms in the space station to

explore, but they utilise it to their fullest

extent. Quality vs Quantity, I always say.

While the game is mainly horrific, there are

classic comedic easter eggs in the game. A

few of these are revealed at the various end-

ings which you can encounter – eight in total.

The White Chamber clearly shows that it’s

possible to make a great title with sufficient

polish and attention to detail. I recommend

anyone, not just adventure gamers, to try

this splendid indie title.

SPROUT
http://www.kongregate.com/
games/customlogic/sprout

REVIEW

13DEV.MAG ISSUE 18

by Claudio “Chippit” de Sa

Sprout is a highly stylized flash adven-

ture game boasting an interesting and

unique premise of guiding an ambitious

seedling from its island habitat to a lush oak

forest. Sprout’s simple gameplay mechanic

means it literally has no learning curve at

all and is simple to grasp. Yet the game

still manages to have a surprising amount

of depth despite the fact that the player is

never offered more than 4 gameplay choices

at any one time.

Sprout features highly stylized hand-drawn

graphics which appear rather like a cut-

and-paste comic. It also features a distinct

variety in locations, each bearing its own

challenge to traverse. Scorching deserts,

steep ravines, fast-flowing rivers and vast

oceans are some of the challenges that await

the little seedling.

The play dynamic is truly where the appeal

of this game lies. The seedling which the

player controls has the ability to ‘learn’

how to grow into different species as it

encounters them. Each variety of plant has a

different attribute that allows the seedling

to traverse different terrain features. A palm

tree, for example, will form a coconut that

can float across water or roll down hills, and

a vine will allow the seedling to reach the

top of a cliff or tree.

As the player progresses, the seedling will

encounter 4 different species of flora and,

by using each one’s unique ability, the player

is challenged to reach the lavish woods

where the seedling will eventually become

the grandest oak of the forest and produce

its own seedlings with their own ambitions.

Pineapples, anyone?

Although Sprout may not take you more than

20 minutes to complete, it’s an incredibly

unique experience throughout and requires

quite a bit of thought, unlike other similar

titles.

FRETS ON FIRE
http://fretsonfire.sourceforge.net/

REVIEW

14DEV.MAG ISSUE 18

by James “NightTimeHornets” Etherington-Smith

Frets On Fire, a nifty little open source

title from indie developer Sami

Kyöstilä, is a tribute to Guitar Heroes

(if you haven’t heard of this game, you

should get out of the cave more, or at least

log on to the internet more often). Kyöstilä

wanted to bring the console-based Guitar

Heroes experience to PC users. For anyone

unfamiliar with the basic concept, the gamer

is presented with a vertical guitar fret board

which scrolls towards the viewer. This fret

board will display five different ‘notes’ which

correspond to a key command and are timed

with the guitar-driven music. As the fret

board scrolls, the gamer will have to hit the

correct note combination. There is also the

element of ‘strumming’ which must be done

at the same moment a note is hit. The game

is all about rhythm and timing, and although

a simple concept it is extremely addictive. It

becomes quite tricky at higher difficulty lev-

els, requiring a bit of practice (and patience)

to get just right.

Frets On Fire (FOF) pretty much emulates the

gameplay of Guitar Heroes, albeit without

the fancy 3D graphics in the background and

none of the licensed musical content. The

player can use a keyboard to control the

game by holding the keyboard upside down

and using the left hand to press keys F1

through F5 to control the five notes; Enter is

used by the right hand to ‘strum’ the virtual

guitar. This works quite well if you have a

compact keyboard but can be troublesome

for people with larger media keyboards,

which usually have loads of extra function

keys along the top. FOF is also capable of

using a wired Guitar Heroes controller, which

is picked up as a joystick and requires simple

mapping of the keys. The download package

includes 3 songs created by the developer.

“What’s the use of having a game with only

three songs?” you may ask aloud, causing a

nearby loved one to become concerned that

you have begun talking to yourself again.

Well, this is where the extensive user

community comes into the picture.

Thanks to the multitudes of people

working around and supporting FOF,

you can download any number

of modifications that enhance

the interface and game envi-

ronment, even adding 3D models

and backgrounds. The most enticing

element of the community is the

contribution of user ‘fretted’ songs.

The list of songs modified to work in

FOF is already huge and is sure to keep

on growing along with the community.

This is one area in which FOF is sure

to outpace Guitar Heroes. Couple this

with the numerous guides and friendly

community members that will help you

convert your very own favourite tracks

to Frets On Fire format, the replay value

is obviously tremendous. If that’s not

enough, there is also a music converter

which is able to import tracks from any

Guitar Heroes game you already own.

This is a great example of open

source development working

well. FOF is a superb emulation

of its mega successful inspira-

tion. It is rather impressive to see

the amount of work going into

modifications and, as an ongoing

project, FOF seems to be inching

its way towards the quality level

of Guitar Heroes itself. Whatever

the future may hold, one can be

sure that one’s keyboard will

never be the same again.

here are many applications that

create customized buttons. We can

also use Blender to do this. This

allows you to set the shape, size and colours

of your buttons exactly. For this tutorial we

will build a cube then use a subdivision

modifier to divide it enough to make it

round. Then we'll build a ‘sleeve’ for the

button using a ‘plane’ object.

Lighting techniques and shadows

will help create the illusion of the

button being in a pressed or non-

pressed state.

Start Blender. Delete all the

objects in the scene (AKEY, then

XKEY). Ensure that your 3D cursor

is in the centre of the screen by

pressing SHIFTKEY+CKEY. In the

front view (NUMPAD1KEY) press

SPACEBARKEY and insert a Cube

object. This cube will become the

button.

and use SHIFTKEY+SKEY to move the cursor

to the selection. With the cursor centred on

the cube, use SPACEBARKEY to add a plane.

Change your viewport to wireframe mode, by

pressing ZKEY. Don't deselect anything. When

adding a new object, all the vertices are

selected. Press EKEY to extrude the selected

vertices. Left click immediately. It would

seem that nothing happened. Don't worry,

something did! Now hit SKEY, and scale the

new vertices out to the width that you want

the sleeve for the button to be. There is a

problem with what we just did. We

essentially created two planes on top of each

other. The test for that is that there is no

hole in the middle of our sleeve. Hit ZKEY

again to see this. Change to Face mode by

hitting CTRLKEY+TABKEY, and selecting

Faces. Now select the faces in the middle of

the object and delete them XKEY ---> Faces

until you can see a hole in the middle of the

object.

TUTORIAL

BLENDER TUTORIAL
Making 3D Buttons

By Stefan “?rman” van der Vyver

T

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

The next step is to go to the editing buttons,

and add a subdivision modifier. This will

smooth out the corners of the cube forcing it

into a round shape. Set the Subdivision levels

as shown in the picture below.

While in the editing buttons window, see if

you can spot the Set Smooth button. Press

the button to see how

beautifully smooth the

cube becomes.

Now it’s time to add the

sleeve for the button. Exit

edit mode with TABKEY, or

use the menu at the

bottom of the viewport to

change into Object Mode.

Ensure that your 3D cursor

is in the correct spot.

Blender uses the 3D cursor

as the location for adding

new objects. In this case, I

want to add a plane right

on top of the other cube so

that they fit together

snugly. Should the 3D

cursor not be centred on

the cube, select the cube

Now we need to change to side-view to

position the sleeve and extrude it to give us

the right amount of depth. Hit NUMPAD3KEY

for side-view. Press AKEY to selects all the

faces. Position the faces where you want the

front end of the sleeve to be. I choose my

location so that the button protrudes slightly.

Then hit EKEY and extrude the sleeve along

the Y-axis (hit YKEY after hitting EKEY). Add

a Subsurf modifier again, using the same

method as what we did previously. Set your

render levels to 3, and hit Set Smooth.

Stay in side-view and change to edges mode

(CTRLKEY+TABKEY). Deselect all the edges

then use box select (BKEY) to select all the

edges along the middle of the sleeve. Use

WKEY to subdivide the edges. Then switch to

Vertices mode and select the vertices we just

added. Then move almost right to the front

of the sleeve. Subdividing the edges and

moving the new vertices towards the ends

means that we are giving more definition to

the ends of the sleeve object. Now we are

almost ready to render our buttons!

Add a material and colour of your choice to

the button. Leave the sleeve gray if you want

a metallic type of look. To add a material,

select the object you want to add a material

to, and click the Shading icon. Click the Add

New button. Hit the gray colour bar (top one

of the three) and select the colour for your

button. I like adding a bit of reflection, so I

always go to the Mirror Transparency tab in

the Shading buttons panels. Activate the Ray

Mirror button if you wish. I set my RayMir

value to 0.30. I also added a new material to

the sleeve and put a mirror value on that

material as well.

Now, add a camera to your scene (Remember

that Blender adds new objects at the 3D

cursor position). SPACEBARKEY brings up the

menu to add a camera. I then positioned the

camera in front of the button, as can be seen

in the side view below. Change the viewport

to camera view to see the alignment and

viewpoint of your camera with the

NUMPAD0KEY.

TUTORIAL

Edges Mode

Result after subdivision

Mirror settings

Side view of camera

Camera’s point of view

Material Colour

Go to the Scene panel. We can set the

camera to render the smallest possible area

around the button, and also to render exactly

the right sized image for instant use of the

rendered image. The power of Blender lies in

the accessibility of these options. In the

“Format” tab” you can specify the pixel

dimensions of your rendered image. You can

also set the aspect ratio. The settings I

entered appear above.

 I moved the camera again so that the button

fills up the whole of the available camera

view. That will prevent the need for cropping

in an external graphics editor at a later

stage.

Now start adding lights (SPACEBARKEY) to

your heart's content. The lighting is up to

you, since it has to fit your requirements for

the button. I used a number of hemisphere

lamps to light the model from all sides, and

then a single spotlight with shadows switched

on to add a key light to the scene. One thing

that I always do is change my background

rendering colour. You can do this by going to

the World buttons, and changing the blue

colour on the left to a pure black.

Firstly, render (F12KEY) an image with the

button in the out position. Now, move the

button backwards (y-axis) in the sleeve so

that it looks like it has been pressed in. To

get the button pressed effect, I go back to

the Shading window (F5KEY). In the Shaders

Tab, enter a value next to the Emit slider.

This makes the colour of the button glow. I

also add a blue light of the Lamp type in

front of the button, to light the edges of the

sleeve object. Now render the scene again.

If you need transparency for the background,

ensure that the RGBA button is on in the

Scene panel (F10KEY). Also make sure that

you have chosen either TGA or PNG as render

format.

The blender file for this tutorial is included

as well and should help illustrate what was

presented in this tutorial. Good luck with

your Blender designs. I sincerely hope that

you will be able to use Blender effectively as

a tool to increase the options you have for

creating graphics for your games.

TUTORIAL

Lighting setup
World background colour

Setting Emit value

File format settings

elcome to the next instalment in

the Beginners Guide to Making

Games. Each month a single

important concept required for making

games will be discussed in detail. This month

we are looking at Score/Health and Lives.

Most games need one or more of these

concepts in them to make them complete

games.

The main goal of the Beginners Guide series

is to try and ensure a detailed understanding

of the various concepts so that they can be

applied to other new and exciting games.

While most traditional tutorials will show

what logic is needed, these guides will

ensure that you walk away actually

understanding each of these concepts.

This article is aimed at someone who has just

started learning to make games. While it is

expected that the reader of the article has

completed the first Game Maker tutorial and

can thus create sprites and objects it is quite

possible to follow the article without having

done so. The article is structured to

introduce a new programmer to the concept

but yet give some value to the intermediate

level programmer as well.

Score – GM Tutorial
The vast majority of games require some sort

of scoring system within the game. Many

games also require a system to manage the

number of lives the player has left, and some

games have effects that eat away at the

health of a player until the player dies. Game

Maker has global functions to manage all

these tasks.

This article will contain the following

sections:

 • A brief Game maker tutorial showing the

basics of getting a scoring system working.

 • This is followed by a discussion, in detail,

of the various Game Maker actions available

to you to manipulate the score, health and

lives of the player.

 • Lastly, a look at various Game Maker

Language (GML) functions that can be used to

affect the score, health and life of the

player, as well as some options for making

each object have its own health.

Game Maker Tutorial
To show how easy it is to create a game that

controls the number of lives a player has we

are going to make a little game where the

player needs to continually bounce a ball

against a wall. If the player misses the ball

he will lose a life. Each time the player hits

the ball we can allocate him a score.

This tutorial is not supposed to be a

complete game, but is designed to show only

the specific function of managing a players

life and score in a game context. This game

is almost the basis of a small Arkanoid game,

and the fun part is that Game Maker actually

comes with all the sprites needed to

complete an Arkanoid game.

Step 1 – Create Sprites
For this tutorial we need sprites to represent

a ball, a wall and a bat, nice sprites for these

objects can be found in the Breakout images

directly that comes with Game Maker. If you

don't know how to create sprites in Game

Maker yet I suggest you refer to the first

article in the Beginners series where we

learnt about how to move an object around

the screen.

Step 2 – Making the Objects
Now create an object for each of the sprites

we have created. Remember to make the

wall and bat solid as we want the ball to

bounce off them.

Create the following events:

 • Within the On Create event of the ball

make it move in a diagonal up direction.

 • Make a Collision event on the ball, so that

when it collides with the wall it bounces off

the wall.

 • Add movement controls to move the bat

left and right with the arrow keys. In this

sort of game I prefer to only move the bat

when the key is actually held down.

Now for the meaningful events in this

tutorial. On the Bat object we need to create

a Create event where we can initialise the

score and lives values. In the actions of the

Create event place a “Set the Number of

Lives” action and set the value to three. This

means that in the game the player may only

drop the ball three times. Also add a “Set the

Score” action and give it an initial value of 0.

TUTORIAL

SCORES AND LIVES
Beginner’s Guide to Making Games

By William “ Cairnswm” Cairns

W

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

Object creation settings

In the ball object we need to create a

Collision event with the bat. In this event we

will bounce the ball and add some score.

Also in the ball object we want to make sure

the player loses a life when the ball is

missed. For this Game Maker supplies a nice

event call “Outside Room” with is an option

in the Others event type. When the ball

leaves the room we need to subtract a life,

and move the ball back to where it started.

To ensure the game does not go on for ever

we could also speed up the ball a little.

Of course we need to ensure that the game

ends when the player has no more lives.

Again Game Maker makes this easy with its

“No more lives” event. In this event we can

just put an “End the game” action to finish

off the game.

Step 3 – Adding our objects to a

room

Create a room and place walls all around the

edge except along the bottom. Place the bat

near the bottom of the room and the ball

somewhere in the middle. When we run the

game the ball bounces neatly around and

bounces off the bat. You'll notice that the

first time the ball hits the bat the title bar

suddenly starts showing the score.

Step 4 – We want to see Lives/
Score
Obviously we want the player the be able to

see their score and lives all the time. The

easiest way of doing this is to define a

“Controller” for the game that displays the

Score and Lives in its draw function.

More Stuff with Actions

Things like managing a player’s score and

lives is actually very easy, and Game Maker

makes it even easier than that. Game Maker

contains a number of actions that work with

Score Lives and Health. Game Maker even

supplies a fully working High Scores screen

that can be linked into the game with no

more effort than dropping an action into the

“No more lives” event.

Health works slightly differently to Lives and

Score as it has a predefined low and high

values. Health always varies between 0 and

100. Game Maker supplies an event called

“No more health” that

triggers when health is

set to 0. This can be used

for things like people shooting at the player

and different bullets cause different damage

etc.

Because health ranges from 0 to 100 it

becomes tricky to display in an easy manner.

Game Maker supplies a “Draw the Health

bar” action that draws a neat little coloured

bar showing the current value of Health. The

health bar is a nice green colour when it is

full (near 100) and degrades to red to

indicate how close the player is to having lost

all their health.

TUTORIAL

Outside room event

Collision events

Our room

Controller object

To allow a player to capture their High Score

into a table just drop the “Show the

highscore table” as an action before ending

the game. This will pop up the high score

table and allow the player to enter their

name into the table (if they have a high

score), and only then exit the game. Most

games would obviously return to a menu

screen rather than just exiting the game.

Game maker includes an action to clear the

highscores table of the existing values that

can be very useful as part of a Menu or

Options screen.

While text is usually good enough to display

score most games prefer to display a players

lives using little pictures instead. Game

maker allows you to do this with the “Draw

the lives as Images” action.

Lives and things with GML

Always remember that each action you can

use is mirrored as one or more GML

statements. So if you prefer using GML for

your game you can do each of the actions

listed above directly in code. Lives, Health

and Score are global variables that can be

used directly in GML. GML also gives you the

option of changing the caption in the title

bar to your own values (Internationalisation

anyone?)

Here are the basic global variables and

settings you can use:

score The current score.

lives Number of lives.

health The current health (0-100).

show_score Whether to show the score

in the window caption.

show_lives Whether to show the

number of lives in the window caption.

show_health Whether to show the health

in the window caption.

caption_score The caption used for the

score.

caption_lives The caption used for the

number of lives.

caption_health The caption used for the

health.

Another cool thing in GML is the ability to

display a health bar anywhere on the screen.

So if you want enemies that had their own

health you could create a local variable on a

certain object called OwnHealth and then in

the objects draw function, display the sprite

as well as calling the draw_healthbar method

to draw their own health, this is typically

what we see in RTS games where each unit

has their own miniature health bar.

draw_healthbar(x1,y1,x2,y2,amount,backc

ol,mincol,maxcol,direction,showback,show

border) With this function you can draw a

health bar (or any other bar that indicates

some value, like e.g. the damage). The

arguments x1, y1, x2 and y2 indicate the

total area for the bar. amount indicates the

percentage of the bar that must be filled

(must lie between 0 and 100). backcol is the

colour of the background for the bar. mincol

and maxcol indicate the colour when the

amount is 0 and 100 respectively. For an

amount in between the colour is

interpolated. So you can easily make a bar

that goes e.g. from green to red. The

direction is the direction in which the bar is

drawn. 0 indicates that the bar is anchored

at the left, 1 at the right, 2 at the top and 3

at the bottom. Finally showback indicates

whether a background box must be shown

and showborder indicated whether the box

and bar should have a black border line.

TUTORIAL

elcome to the tutorial on basic

vector sprites. In this tutorial you

will learn how to create a very

basic vector sprite that can be used in a

game and even animated at a later stage.

Some hobbyists use tile sets to create their

game’s graphics. A tile set is a number of

images that contribute to the graphics of the

game such as patches of grass, walls,

enemies, etc. The sprites we create can be

scaled and used in a tile set. We will look

further into tile sets in the future.

What’s a Vector Image? A vector image is an

image created using math in the

“background” (you don’t need to apply any

math so don’t worry). Plotting points on the

canvas creates the shapes; these points

collectively create a path. A vector image is

more useful for creating sprites as the image

is sharper and cleaner cut. It doesn’t store a

colour in each pixel to create the image as

bitmaps do. A vector image can be resized

without any loss of image quality; this makes

it ideal for game sprites as we may need to

scale the image for different uses. When

creating vector images we will make

excessive use of the pen tool. The other tools

will be used in the future.

Let’s get started! The first thing we need is a

canvas to work on so create a new image by

pressing Ctrl+N and enter the details as seen

in figure 1.

Spites are usually small images but we are

using a 600x400 canvas to fit all the views of

our character in the image and to make it

more comfortable to draw the sprite without

worrying about size restrictions. The

different views can be copied to a smaller

canvas and scaled to have several different

sprites of the character that can be used in a

game.

I was thinking of a fun and basic character to

create for a first time user and thus “Smurfy”

was born - he is part alien, part Smurf. We

will start with a side view of the character,

as we would see it in a platform game.

Since we are creating the character from

scratch it would be rather difficult to create

an outline of the entire character from head

to toe, so we are going to create each body

part separately. Firstly, our character needs

a head. Select the pen tool (P). Now hold the

“Alt” key while you click on the canvas, each

click will create a point in the path. Create a

shape that resembles the shape of a head,

you don’t need to worry about making it

perfect the first time as we can adjust this.

Your side view of the character’s head should

now look something like

figure 2 below.

TUTORIAL

GAME GRAPHICS DESIGN
Part 2: Basic Vector Sprites

By Rishal “TheUntouchableOne” Hurbans

W

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

Figure 1

Figure 2

We now need to add some smoothness to the

character’s head; this can be achieved by

adding, deleting and moving points of the

path. For this you will need the “Convert

point tool”, this is a tool in the “Pen tool”

drop down list. Look for areas on the path

that needs more shape to it or areas that are

too sharp and need smoothness. You can

add more points as you see fit, though

the fewer the better. Add a new point

by right-clicking and selecting “Add

Anchor Point”. If there are

unnecessary points, you can delete

them by right clicking on the point and

selecting “Delete Anchor Point”. The

best way to achieve the shape you want

would be to move the points into the

correct positions. Hold the “Ctlr” key,

click on the point you want moved

and drag it to the position you desire.

You have full control over each point

as you can change any aspect of it to

suit your sprite. After playing around

with the points, you should have a

shape that looks similar to figure 3.

Once you are finished with a shape, it would

be a good idea to create an outline for it.

This makes the shape look a lot better and

helps you distinguish between the different

parts of the character’s form. You can apply

an outline by right-clicking on the shape’s

layer in the layers

palette, selecting “Blending Options” and

checking the “stroke” checkbox. Then click

on the stroke label and enter the details as

shown in figure 4. Your result should look

like the image above.

There we go. We now have a head for our

character. I think he would appreciate a body

too. For this character, we are aiming

at a wacky, cartooned style so

you can go wild with creativity.

We use the same method as we

used for the head to create the torso.

Plot the basic points and then alter

them by adding, deleting and moving

points. Before you start with the

points, select a different colour in the

foreground colour palette as it is better

to distinguish between the different

shapes and a colourful character

is usually an attractive one. The

image should now look similar to

that in figure 5, it is a very basic

shape and doesn’t look like much at

the moment, but it gets better.

Remember to add an outline after you

are done plotting the body. It would

also be a good idea to start naming the

different layers respectively in the layers

palette, simply right-click on the layer’s

name and type the appropriate name.

The next part we will create is the

character’s arms. Plot a

path for the right arm as

shown below in figure 6 remember, you can

always manipulate the points using the

“Convert Point Tool”. Use the

same colour as the torso for

the arm.

Now the character needs a

hand. Since he is an alien

and you probably would find

it difficult to plot a real

looking hand, we will give

him an alien type of hand. Plot a shape that

looks like a hand of sort as shown in the

image to the right. Don’t worry about

plotting the hand over the arm layer, we will

move the hand layer below the arm layer to

fix this, just make sure you have a smooth

flowing shape. Your image should now look

similar to figure 7.

The hand layer can be moved behind the arm

layer by moving it in the layers palette. Just

click and drag the hand layer so that it is

positioned before the arm layer. The outline

can also be added now.

We can’t have a character with one arm and

we definitely can’t waste time drawing

another arm and hand shape so we will

simply copy the current arm and hand

shapes. Do this by, selecting the arm and

hand shapes in the layer palette (hold Ctrl

and click on the layers). Then right-click and

select “Duplicate Layers”, this will make a

copy of the layers and they will be selected

automatically. Use the move tool (V) to move

the two layers to the right of the canvas; you

will now see the duplicated layers. To put

the character into perspective, we need to

make the left arm and hand layers smaller

than the right side as it is slightly further

back. While the two layers are selected, click

Edit->Transform->Scale. You can now scale

the arm and hand

slightly smaller

as seen in figure

8 alongside.

TUTORIAL

Note:

If you have trouble creating shapes
with the pen tool, just experiment
with it by creating different shapes
until you become comfortable with its
use.

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Now simply move the two

layers behind the body layer

as we did earlier in the layers palette. It

should look similar to figure 9

The character looks slightly better with his

newly-acquired arms. We will now add some

pants to the character. We are going to make

the character rather short so defined legs are

not needed. Select a new colour and create a

basic squared type of shape for the pants, we

will use some blending options later to add

some detail. The plotted shape

should look as shown in

figure 10.

Move the pants behind the torso

shape and add an outline to it.

The character still looks very

basic but it is taking some

shape. The character now needs

some shoes; we are giving him

large clown shoes just to add to

the wackiness. Choose a different colour and

plot a shoe for the character using the pen

tool. Duplicate the shoe as you were shown

earlier and move the layer behind the right

shoe’s layer, then move it a little to the right

to show just the front of the shoe.

Our character is

almost complete, but

he seems to be

complaining about the

fact that he doesn’t have

any hair, eyes or mouth.

Lets select a different

colour and plot a

shape that resembles

hair (you can choose

any hair style you want - this is a military-cut

gone bad).

The character also needs sight! Select black

as the foreground colour in the colour

palette then select the ellipse shape tool and

draw a small eye for our character. You can

now plot a small mouth using white as the

foreground colour in

the colour palette.

We now have our character. It is a very basic

character with basic colours, so we need to

embellish it. We want to keep it a vector

image so the best way will be to use the

various blending options for each body-part.

We can add different textures, gradients and

shadows to give the character depth. Select

a layer in the layers palette and experiment

with the different effects, a simple effect

applied well can add a lot to the sprite’s

over-all appearance. Once the sprite is

complete you can add a Fuchsia coloured

background, chop off the unused blank space

and save the file as any format that can be

used in your games. The effect shown below

was applied to the head layer.

I created a range of views of the character

and applied all the shading shadow, textures

etc. to make them look a little bit better. It

is useful to create multiple views because

they are needed when creating a game; you

can’t have a character walking right but

facing left, so you change the

sprite to the games needs. A

gradient was also applied to the

pants to give the effect of legs. It

just goes to show how useful

simple techniques can be.

The blending options allow a variety of

effects to be created and this allows you to

unleash your creativity. Here are a couple

different effects I used on the same sprite.

That’s it for this tutorial, I challenge you to

start creating your own unique, imaginative

sprites or maybe just finish the rest of the

views of this sprite, just to make sure you

got the hang of it. If you need this example

of “Smurfy” you can grab the photoshop

project file at the link below. Good Luck!

(www.devmag.org.za/uploads/Smurfy.psd)

TUTORIAL

Note:

In the transform menu there are a
variety of tools that can be used to
manipulate the image. It would be
useful to browse through them after
the tutorial as they can be useful in
animating sprites.

Figure 9

Figure 10

Above is an example of what this sprite could
look like in a game made with Game Maker.

Racing Away with Mini#37
A game development postmortem

DESIGN

25DEV.MAG ISSUE 18

by local studio Luma

Local design studio and game develop-

ers Luma have already been featured

in Dev.Mag for their endeavours.

Although the company’s gaming division,

LumaArcade, has already moved on to other

exciting products, their campaign to show-

case Mini#37 is still going strong, and report

the 2007 rAge expo as a huge success for the

product.

Mini#37 is a single/multiplayer racing game

which has players racing around real South

African environs — including as the streets of

Cape Town and the Golden Mile at Durban —

armed with some mean Minis and an arcade

game dynamic which reflects that of popular

titles such as the Need for Speed series.

The development team graciously decided

to enlighten us about the creation process

and give Dev.Mag’s readers a better idea of

what goes into a game like this. If you don’t

already know about Luma and would like to

know more about them and their creations,

take a look at http://www.luma.co.za/.

Dale Best

What I did: >> Creative Director / 2D artist /

GUI / texturing / Producer / Client liaison

When looking back at our design document

— and seeing how Episode 01 and 02 have

turned out — I have to say we pretty much

hit all our objectives, and there really has

been nothing extra that crept in along the

way. Our goals up front were quite clear, and

a few “nice to haves” on the wish-list ended

up being executed. One area of game play,

however, was not possible to do to its fullest

extent, because of restrictions imposed on

us by the dreaded DIF format, which Torque

uses for large world objects like floor areas

and buildings.

One of the areas I championed up front was

a strong multiplayer aspect. We went down

to the Zone in Rosebank, and played Daytona

USA at the arcade. The experience we had

at rAge this year proved that we had fulfilled

this objective.

The game was played in excess of 2000 times

over the 3 days. I wanted a group of friends

to jump on, have fun, and then walk away

with smiles on their faces. This happened.

One thing we decided to do was sneak in 3

additional tracks (Durban) from Episode 02

which we had not finished completely into

the demo version we had up at rAge. These

tracks contained a new aspect of the game

which we had just recently incorporated,

DESIGN

26DEV.MAG ISSUE 18

namely the loops. By watching people play

theses new tracks, we identified a weakness

in the design regarding the lack of alterna-

tive routes around these loops. You can’t

playtest enough, ever!

When we set out to make MINI#37, I wanted

to make a game that ANYONE could play. At

the same time, a more experienced game

player still needed to be challenged and

learn how to power slide for example, or

simply drive well - finding the ‘zone’, which

gives this game its distinct personality.

As a starting point, from a visual point of

view, we took some cues from Need for

Speed Underground. The great arcade check-

point style of Outrun was an inspiration for

gameplay. The relatively simple track layouts

made from city blocks in the original PGR on

XBox helped us lay out a methodology for the

track design.

Additional game play elements like the

world ranking leader board, which is to be

published on the website, all ended up in

the final version. Our initial objectives were

pretty straight forward, our intention was

never to reinvent the wheel for this project,

we wanted a robust, fun to play, and simple

racing game, that looked good, played well,

and had MINI cars in South African cities.

Luke Lamothe

What I did: >> Technical Director

When work began on MINI#37, the first task

that us programmers had to face was to

decide on what technology we would use

in order to bring our vision of the game to

life. Seeing as we had such a short turn-

around time available to us before we had to

deliver the first public demo of the game (3

months!), we immediately took the stance

that we would have to make use of a 3rd

party engine instead of creating our own

technology from scratch.

Given the kind of technology that was neces-

sary for us to licence (specifically vehicle

physics and networked multi-player sup-

port), combined with the budget that we

had access to for our development, it quickly

became clear that the best engine for the job

would be the Torque Game Engine.

At first, TGE seemed to be a blessing from

heaven as it contained support for everything

that we needed in order to get this project

done. It had fully featured world building

and editing with both meshes and terrain,

fairly comprehensive mesh support with LODs

amongst other things, lightmapping, a GUI

system, an audio manager, vehicle dynamics,

and most importantly for us it was complete-

ly built around a networked architecture as

multi-player was going to be a very important

aspect of our game. Our initial work with the

engine was very promising, but we soon be-

gan to run into both minor and major issues

with it as soon as our learning curve began to

straighten out.

Firstly, TGE contains a numerous amount of

bugs in it. Most are not show-stoppers and

only creep out in certain circumstances,

but there are a few contained within the

engine that caused us serious trouble. Most

of these had to do with the art pipeline and

the creation of world meshes for TGE, which

use what are known as MAP files. MAP files

define convex brush meshes which are used

to generate a world in BSP format, and the

DESIGN

27DEV.MAG ISSUE 18

tool that comes with TGE that converts these

files into the native format that the engine

uses has an enormous amount of bugs in it.

Secondly, we ran into serious issues with the

vehicle dynamics, specifically with the colli-

sion detection and reaction systems.

As we eventually found out, these issues have

been an ongoing problem in Torque since it

was first released and have never really been

solved in a satisfactory manner by the devel-

opers. We ended up making many changes

to how the vehicle physics are processed, as

well as completely re-writing the collision

system to use a different method that wasn’t

based upon convex meshes (as all collision

detection is in TGE). Also in respect to vehi-

cles, we found that their networking support

was less than stellar, and there were numer-

ous changes that we had to make to the

vehicle logic in order to reduce the warping

effect of vehicles, as well as to fix how colli-

sions worked in a networked environment.

In addition to the bugs that are present

in TGE, there are also a lot of features

missing from the engine as well as a lot of

limitations. We had to add our own support

for what should be basic effects such as

cubemapping, alpha testing, and mip-map

LOD bias settings. On the limitation front,

TGE unfortunately still uses very old technol-

ogy with respect to how its world meshes

are rendered. Essentially, the world meshes

are stored in a BSP format and are iterated

through during each rendering frame, while

the engine dynamically inserts the visible

polygons into a vertex buffer for rendering.

This causes a severe CPU overhead which

effectually limits the number of polygons you

can have on screen at a time. This meant

that we ended up limiting ourselves to having

no more than 20 000 polygons visible at once

without any cars in view, which would ap-

proach 40 000 polygons when all 4 cars were

on screen, which is quite a pittance when

compared to the number of polygons that

most modern games are able to push out!

Despite all of the negativity that we have

developed towards Torque, looking back we

definitely wouldn’t have done anything dif-

ferently. TGE was a very inexpensive option

that allowed us to get a functional PC game

up and running within a few months and fully

completed in less than a year from start to

finish.

DESIGN

28DEV.MAG ISSUE 18

David Baxter

What I did: >> Lead Artist / set up art asset

pipeline / world building / models / textures

Torque Game Engine nearly ushered in my

retirement from developing games after

seven odd blissful years. If it weren’t for the

exceptionally talented and creative people

I worked with, I would be a DTP monkey (no

offence) or a waiter somewhere right now.

They pulled me through. I will be forever

grateful to them. After that statement and

because I have been allotted only a couple

of paragraphs to — quite obviously — vent, I

won’t go into too much detail and proceed

immediately with the “Y” incision.

If you have zero budget, all the time in the

world, like trolling around in forums and are

an avid hobbyist, TGE (Torque Game Engine)

is and should be your first choice, in my

humble opinion. Good luck to you, welcome

to developing games, collect your name tag

at the door, the buffet awaits you.

However, if you have a vision, design ethic,

timeline (consequently deadlines) and a cli-

ent/publisher to report to, and are by defini-

tion a professional game developer, steer way

clear of TGE. Do not believe anything an en-

gine purports at being able to do, ever. The

proof is definitely in the pudding. Take the

time to get to grips with the likely candidates

for your final game engine. The time spent

on doing just this will expose you to their

secretive inner workings, supplied documen-

tation and the community that holds them all

together. Once you are happy with all these

factors, and have convinced your program-

mers that you have a winner (everyone must

be on board), then full steam ahead!

Herman Tulleken

What I did: >> Programmer / GUI / AI

The GUI provided fertile soil for new features

and bugs alike. The GUI was expanded

considerably over the course of the project,

not just to add more features, but also to

give more information to the player. We

also made many changes after play tests to

ensure the information we wanted to convey

was visible and understandable.

An important technical design goal for

MINI#37 was to make the game very modda-

ble – just drop some assets and setup files in

a folder, and a new colour, car, or level would

automatically appear in the menus and work

in the game. This goal had a big impact on

constructing the GUI. We could not use the

built-in GUI editor (it is geared towards very

static GUIs), and widgets had to be designed

to work in very general conditions. Ironically,

because of the complex dependencies on as-

sets, “dropping a few files in a folder” turned

out to be a tricky, error-prone task (they had

to be named and placed very specifically),

and it is questionable if we saved time by not

hard-coding everything.

One of the biggest problems we faced was

making the GUI robust for different resolu-

tions. Its solution required many changes to

engine, including changes to the font system,

GUI animation speeds, and new layout

modes. Because the changes are so scat-

tered, resolution bugs kept appearing, and

testing any change across all resolutions soon

became standard procedure.

Developing the racing AI drivers was very

rewarding, even though at times their (AI)

stupidity drove me up the wall: Why was he

just sitting there? Why is she (yes, some driv-

ers were female) trying to drive through the

wall? Why is he circling endlessly around a

check node? A steering indicator, implement-

ed before even starting with the AI code,

allowed us to see where the AI driver thought

it should be going, and where it detects col-

lidable objects which proved invaluable in

debugging the AI.

It became clear that the best algorithms in

the world meant nothing if you couldn’t get

sufficient data regarding the path to your

agent. The AI went through three major ver-

sions, each change motivated by a new tool

that allowed us to get better path data into

the game. The final AI employs a state ma-

chine, which makes it easy to add driving be-

haviors. To create paths for this version, we

used Diorgo’s 2D level editor TuDee, which he

modified to support paths and custom node

data. This allowed us to specify AI behavior

very precisely, including optimal speed, when

to use nitrous and handbrake, and whether a

special driving behavior should be used, as is

necessary for loops and narrow passages.

“THE LEARNING CURVE”

DESIGN

29DEV.MAG ISSUE 18

Chris Cunnington

What I did: >> 3D Artist / World building /

modeling / texturing

In the early days we had high expectations

for the look of the game. Curving roads,

specular on the tar, cambered corners were

all on the list as thing we wanted to have.

It was at this point that we began producing

assets, simple things like the trees and roads.

Static meshes (DTS format) worked out

perfectly, and it wasn’t long before we had

trees, lamps, road signs, etc exported and

ready for the game.

It didn’t take long before we hit a major snag

in the DIF format. (For those who don’t know

Torque, the DIF format is basically designed

for modeling interior objects and is based on

BSP technology). The DIF technology began

firstly by simply being a nightmare to export

from 3D Studio Max and convert into the DIF

format. Texture coordinates were unstable,

polygons would sometime not render or

simply not retain collision information. After

months of research the pipeline became

reasonably stable as long as we worked

within extremely limiting boundaries. Those

boundaries included being forced to use

cubes to model and not standard mesh mod-

eling methods, keeping faces on all polygons

planar, no UVW Unwrapping was allowed,

being unable to skew textures, etc. The list

is quite extensive. We made do with what

we had, and actually found workarounds for

most of the major downfalls.

Each location in the game was scouted out on

Google Earth and track design was based on

real life locations. After choosing the routes

(all around 2km’s in length) we traveled to

every location on a photo shoot. The photo

shoots, gave us all the texture reference

we needed for re-creating the worlds in the

game, it also allowed us to shoot panoramic

images that were then used in the production

of the skyboxes and some photos ended up in

the GUI designs.

As time went on, modding the engine and

writing tools allowed us to take every new

track to the next level. We started play-

ing with curved surfaces which resulted in

the loops in Episode#2. We also began using

static meshes more often and using hidden

DIF collision meshes together. This allowed a

marked visual improvement for specific world

items, such as the tunnel in the Barbican and

shadows/skid marks in the day light levels.

Not having specular or bump maps became

something that we had to settle with. Textur-

ing had to be stepped up a notch and had to

be done quite carefully, nearly all lighting

details, and simulated ‘bumps’ ended up be-

ing included in the textures.

IN SUMMARY
We think we pulled off what we set

out to achieve in a methodical, per-

sistent manner. We understood many

of our limitations up front, though on

the technical side there were many

curve balls which we did not expect.

These issues were examined, and then

prioritised. Adjustments to the Design

Document were made to accommodate

these unknowns, and we made peace

with what we could and could not do

within the restrictions of time and

budget. Working within parameters

and restrictions is always a rewarding

process, as it forces you to think more

clearly, and come up with creative solu-

tions to problems by thinking outside

of the box. What’s also cool about

‘solving’ issues pertaining to flaws in

your technology is that people always

ask “How did you do that?!”, and thats

very rewarding. All being said and done,

game development, to a large degree,

is after all just smoke and mirrors!

On a more sober note, we overshot

our deadline by around 60 days, and

consequently went over budget as a

result. We also had not budgeted in the

minute-long CG Intro, but decided to

do one anyway and cover that cost too.

The result was that LumaArcade subsi-

dised the total cost of development by

around 25%. In our opinion this was not

a problem since we got to build our first

game, build a core team, and still got

paid 75% of the cost to do it. Our busi-

ness model for MINI#37 as a franchise

will also cover these upfront costs over

time as we continue to develop more

Episodes. Given the opportunity to de-

cide, the team at Luma would definitely

do this all over again!

DESIGN

30DEV.MAG ISSUE 18

Diorgo Jonkers

What I did: >> Programmer / Testing / Tools

In July this year, I started work at Luma,

primarily to make mobile games. So I only

arrived at the final stages of the MINI#37

game development cycle for Episodes 01

and 02. I did play testing and worked on an

editor to place the A.I. paths for the game.

Play testing was a fairly easy process, since

most of the bugs had been sorted out and

features added by the time I started work

at Luma. I played the game and made notes

on any obvious graphical issues, unusual or

suspicious A.I. behavior, and general sugges-

tions to make the game more polished or the

interface more user-friendly. Occasionally I

took some screen shots and made notes on

the screen shots. The most fun aspect was

the multi-player tests we did. We had the

game installed on four rigs (a monitor, steer-

ing wheel and comfy seat) and had good fun.

Herman (one of the programmers working

on MINI#37) was talking about the process

he and Chris (one of the artists working on

MINI#37) were using to set up the paths for

the A.I. vehicles. The splines were created in

a graphics program (Inkscape) and no proper-

ties could be applied to the splines. I showed

him a level editor that I was busy working

on at home, called TuDee. Splines were one

of the features I was planning to add to

TuDee, so I decided to add the splines before

doing anything else. Herman gave me a few

features he wanted me to add to the splines.

The most important of these was the ability

to set properties for each path node. This

will allow him to more accurately control the

A.I., for example, he could specify at which

node they must use nitrous or handbrake. I

started adding the splines and kept providing

Herman with updated versions of the editor.

He made good suggestions which made the

spline editing more user-friendly. What did I

learn from this? Don’t assume your program

is user-friendly until someone has happily

used it.

CODING ETIQUETTE
Consistent Styling

DESIGN

31DEV.MAG ISSUE 18

by Luke “Coolhand” Lamothe

The past six articles in the Coding Eti-

quette series have been designed to

make programmers think about how

they code, not in terms of squeezing as many

clock cycles as possible out of their algo-

rithms, but instead in terms of how they can

make their code more pleasing to not only

their own eyes, but also to the eyes of any-

one else who may have to view their code.

In this, the final entry of the series, we will

look at how all of what we have gone over up

until now can come together to create what

is known as a Coding Guidelines Document,

which is designed to help lone-wolf program-

mers as well as team-oriented programmers

maintain a consistent style to all of the code

that they produce.

Being aware of the fact that there are both

good and bad ways to code, quite frankly,

just isn’t enough. Programmers who want

to be taken seriously when applying for jobs

and who want to be successful when working

together with large teams of other program-

mers need to take an active role in the style

of their code. This means not merely writing

neat and organised code only when they feel

like it, but instead being able to commit to

consistently generating code of the same

high quality over and over again. In order to

achieve this, it can be quite useful to take

the time necessary in order to put together

a Coding Guidelines Document that clearly

defines all of the rules that you would like

your code to adhere to.

Most programmers feel that this is something

that should only be done when there are

many programmers working together on a

team, but it is actually just as beneficial for

single manned teams to implement such a

document. This forces programmers, espe-

cially independent ones who are not used to

working with others on a team, to actually

put down in writing all of the rules, guide-

lines, and coding styles that they feel make

up the way that they code. The added ben-

efit for independent programmers creating

a document like this is that if and when ad-

ditional programmers should join their team,

they will already have a clearly defined set of

rules for the these members to follow.

The actual creation of a Coding Guidelines

Document is very simple, if a little time

consuming. The easiest advice to give is to

go through each of the previous articles in

this series and make notes of any sugges-

tions given that you feel would be helpful to

the way that you code. Next, examine your

own code as well as any other code that you

may have come across in tutorials and the

like, and look for certain styling that appeals

to you or that you think would improve on

the quality of your own coding style. Once

you have all of this, you can simply create

a document with different sections such as

Syntax, Commenting, Language, Suggestions,

Best Practices, etc., and list the guidelines or

coding style samples for each topic that you

feel are useful to follow.

At the end of the day, each and every

programmer will have unique coding styles

or rules which suit them, none of which are

necessarily right or wrong. It is important

however when writing a Coding Guidelines

Document, that you make sure to include

every possible item that could affect the way

that you wish for your code to be written.

Every aspect of coding that can be thought

of (ie. line indentations, bracket placement,

function usage, variable naming, comment-

ing, error checking, syntax, etc.) should

be written down so that there can be no

misunderstandings when it comes to how you

would like your code to be styled, especially

once your own team of programmers grows to

the size necessary to take on larger projects

that one-man-shows just can’t handle on

their own!

THE HISTORY OF I-IMAGINE
PART 8: “ ‘Final’ Armada? ”

DESIGN

32DEV.MAG ISSUE 18

by Luke “Coolhand” Lamothe

After spending the previous two years

unsuccessfully trying to convince

publishers to sign us up to a deal for

either our own original IP or to develop an

existing IP of theirs, I-Imagine as a develop-

ment studio was beginning to get into trou-

ble. There was increasing pressure coming

from various investors amongst the venture

capitalists who provided the initial funding

for the company, with regards to when we

would stop spending “their” money without

having anything to show for it other than a

single game for a single platform after nearly

5 years. Knowing of this, Dan and I sat down

around the middle of 2004 with the purpose

of talking about what would most likely be

our final shot at developing a game that

would be of interest to publishers, and that

would allow us to finally become financially

secure. Before actually discussing what kind

of game we thought we should make how-

ever, we first agreed to a set of parameters

which any game idea that we would decide

upon had to adhere to.

The first parameter was that the game had

to be designed first and foremost for the

PS2, with Xbox and PC only as afterthoughts

due to the fact that publishers only really

wanted PS2 content as the new generation

of machines was on the horizon and PS2 was

clearly the market leader in the current

generation. The second one was that the

game had to be achievable with a minimum

amount of changes to our existing technol-

ogy, which invariably meant that it had to

be a vehicle-based game as we didn’t have

the time or money to spend on developing

brand new technology from scratch. Thirdly,

it had to be a game that we would be excited

about developing which meant that it had

to be a game that we would want to play, as

we knew the power of having people work

on something that they themselves could

get excited about rather than just working

on something that they are told to work on.

Lastly, it had to have a lot of eye-candy in

it as from our previous experiences, that is

ultimately what gets publishers interested in

your game. In other words, it isn’t the idea

or the substance as much as what makes

them think “Cool!” in 30 seconds or less.

Given these parameters, our brainstorming

quickly began to form around a type of game

that had a Wing Commander feel to it, but

instead of being a space-shooter, it would

use land vehicles. Initially, we were keen

on building the game around an urban post-

apocalyptic setting with burnt-out cities*,

revolving around rival gangs fighting it out

over control of these areas. The player

could take on the role of the good guys

(some kind of law enforcement) or the

bad guys (one of the gangs). However, after

some more thought was put into it, we un-

fortunately came to the conclusion that we

weren’t confident with being able to pull

off everything that we wanted to in this

game (large cities, lots of vehicles, cool eye

candy) on our target platform, the PS2. This

pushed us even more into the Wing Com-

mander vein as we decided to also use

space and the future as our backdrop,

only we would place the player onto

actual planets instead of keeping them

in the void of space itself. The major

benefits of doing this were that not

only could we use the “excuse” of

having the game set on underde-

veloped planets that were more

rural and therefore potentially

more sparse in terms of the

art resources necessary to

make them look good, but

this also allowed us to not

have to keep in line with

creating art that people

* Think “Escape from New York”.

DESIGN

33DEV.MAG ISSUE 18

would compare the fidelity of to Earth-based

settings*.

Once actual development on Final Armada

was underway, our first goal was to have

a prototype that demonstrated the player

controlling a vehicle and having the abil-

ity to fight and destroy other vehicles and

buildings. The idea behind this was that if

we could prove that this would be fun to

do, then we knew that we were on the right

track and that we could end up making a

game that other people would have fun play-

ing as well. Around the end of October 2004,

we were able to complete this demo which

had a vehicle with machine guns and missiles

fighting against AI vehicles against the back-

drop of an alien planet, and lo and behold, it

was actually really fun to play! Once the fun-

potential of our game was proved to us, we

set out to nail down the technology necessary

to pull it off on the PS2**.

We ended up going through quite a few

iterations of this technology, from our world

mesh rendering (we didn’t have a terrain

renderer), to the particle system, to having

the ability to convincingly draw large scale

environments spanning more than 3km2.

Unfortunately, we were always hindered by

what the PS2 could do with these kinds of

large scale environments which was mostly

due to the machine’s relatively low amount

of memory***, but also due to the rendering

power of the the PS2. After much trial and

error, we reached a point where we happy

with what we were able to achieve in terms

of graphical output, with mesh-based LODs

for our worlds (similar to what Shadow of

the Colossus would eventually use), alpha

fogging of our world geometry combined with

permanently visible meshes for our back-

grounds and large objects in order to give

the illusion that the entire world was always

being drawn, and a very robust effect system

which allowed our artists a large amount of

freedom and power to come up with unique

and very pretty eye-candy for all things parti-

cle-based. Also, our own in-house game edit-

ing tool was written during this time in order

to help us manage our worlds with things like

lighting, scripting, and special effects. This

tool ended up proving itself invaluable to us

and we wouldn’t have been able to do a lot

of the things that we did in the game without

having access to it.

The majority of publisher interaction during

the development of Final Armada has actually

escaped my memories, as the 2+ years that

were spent working on the game actually

seem like nothing more than a few months in

my mind! I do remember that initial publisher

interest in the title was very similar to our

earlier efforts, and that while we did have

some parties who seemed keen on the title,

it was always the same old story of wanting

* Who knows what a plant or tree would look like on Planet X?
** Our initial demo was only running on the Xbox as that was quickest and easiest to develop for.
*** The PS2 has 32MB of RAM (of which only 31 are available to the developer) where your game data is stored and 4MB or VRAM (video RAM)
where your video buffers (frame, Z, offscreen, etc.) and textures are stored.

DESIGN

34DEV.MAG ISSUE 18

us to come back to them later when we had

more to show. The fact that it was primarily

a PS2 game, however, did lead to a lot more

interest amongst the smaller publishers as

they just wanted to get any product out into

the market. We even had a few deals offered

to us mid-way through our development

by these smaller publishers, but they were

always very low in terms of upfront money,

although decent in terms of the potential

royalty returns. Each time one of these deals

came up though, it was turned down by the

directors of I-Imagine as they wanted to hold

out and secure a deal that meant that we

would be able to turn a profit from the sale

of the game, and not have to rely on royal-

ties in order to do so, which was something

that I wholeheartedly agreed with.*

By the time that 2005 began to draw to an

end, we were still having publisher bites

but the I-Imagine investors were starting

to grow weary of us spending money with

nothing to show for it. At the AGM that year,

it was decided that if a deal for the game

wasn’t signed before the end of the year,

that I-Imagine would close its doors and that

the investors would take their remaining

money back from the company. As expected,

the team was quite upset about this turn of

events, and while nearly everyone began to

start looking for jobs elsewhere in the indus-

try (particularly in the UK) they still did their

all in order to try and secure a deal for Final

Armada before the end of the year. However,

when December rolled around and we still

had not secured a publishing deal, the final

decision was made and nearly the entire

staff of I-Imagine was retrenched. The only

exceptions to this were Dan and myself who

would remain employed for a limited amount

of time (until the end of March) while still

trying to finish off and sell the game that we

had, as well as one of our artists Dave who

was brought back on a contractual basis in

order to complete the resources for various

sections of the game. Luckily, most if not all

of our retrenched employees were able to

find work quickly, with the majority of them

moving overseas to the UK or the US.

Ironically, not long after the retrenchments

happened, we began to communicate with

a publisher called Virgin Play. They were

based in Spain and were looking at extend-

ing their PS2 and PSP ranges in a bid to start

publishing into the rest of Europe. While we

continued to work our way through January

and February, talks with them seemed to

progress and by the time the end of February

came around, I went away on my honey-

moon hoping to return to some good news.

As it happened, by the end of March a deal

was made with Virgin Play for PS2 and PSP

versions of Final Armada that were due to be

completed by the end of 2006. Upon hearing

this news, we knew that we would need to

bring on board at least one other program-

mer** and another artist*** in order to com-

* You also want to give reasons to a publisher to invest time, money, and effort in promoting your game, to ensure that it reaches a good
number of sales; if they have invested a decent amount of money in it upfront, they are more likely to do so compared to if they have only
invested a relatively low sum of money.
** The technology was done for the PS2 version, but we needed to convert it to PSP as well as have networked multiplayer gameplay working
on that platform.
*** Most of the art resources were completed but some still remained, and we needed to complete all of the game’s pre-rendered cutscenes as
well as re-factor various resources for the PSP (related to performance and screen-resolution).

DESIGN

35DEV.MAG ISSUE 18

plete Final Armada in time. As a result, we

brought back another of our previous artists,

also named Dave, in order to complete the

cutscenes as he was busy waiting for a work

permit in order to enter the UK and take up

a job there which he had already secured. As

for programming help, we turned to Danny

Day, otherwise known to readers of Dev.Mag

as ‘dislekcia’, to handle all of the network

code for the PSP, as well as to get our engine

working in a networked manner as it had

never been designed to do so.

Our first task upon signing the deal with

Virgin Play was to convert what we had of

Final Armada to PSP as we needed to pass

through Sony’s internal approval process as

quickly as possible. We were luckily able to

use the PSP version of RenderWare to make

the initial stages of the conversion relatively

painless, and once various art resources had

been reworked for the hardware*, we had

the game up and running with most of the

same features as the PS2 version within a

few months. Once we were comfortable with

the PSP version actually being a possibility,

we turned our focus towards finishing off the

PS2 version of the game. We were able to

do this by October 2006, with things such as

localisation into various European languages,

small bug fixes, and feature requests from

the publisher being the only real hurdles that

needed overcoming.

Once the PS2 version was done and off in

SCEE certification-land, we moved on to

getting the PSP version completed. There

were still some specific resource changes

and PSP code necessary, as well as certain

programming techniques which needed to

be rethought and reworked entirely for that

hardware as it didn’t support some things

that the PS2 did. Most notably though was

that we had to complete and implement

an entire multiplayer mode which caused

rippled changes to occur through the menu

system, to the GUI, to additional levels and

effects that were needed. Finally, towards

the end of November 2006, the PSP ver-

sion was ready for certification. Around this

time, the PS2 version passed its certification

process, and by early January 2007, the PSP

version finally passed certification as well.

By the time that both versions went “gold”,

I-Imagine had already formally stopped its

day-to-day operations. I had begun a new

job at an animation studio in Joburg called

Luma, where they were starting up their own

game development division to complement

their existing 2D and 3D design studios [Their

first game development project, Mini #37,

has already been featured in several Dev.

Mag issues – check out the postmortem in

this edition]. Dave-1 also joined me at Luma

in order to head up their art team for their

first project, which was to be a racing game

featuring Mini Coopers set in various South

African locations and commissioned for MINI

South Africa. Dave-2 left for his job in the UK

once his cutscenes were finished, which was

quite a while before the game was actually

completed, and Danny’s contract ended once

the PSP version of the game was certified

and his network programming skills were no

longer needed. Dan moved on to a new role

with MI Digital as their Marketing Director,

where he was responsible for bringing the

Xbox360 into South Africa, making use of all

of his previous years of built-up connections

with the people at Xbox.

By the middle of 2007, all of the investors

were finally paid out their investment capital

and I-Imagine was officially reduced to noth-

ing more than a bunch of computers, some

software licenses, various in-house developed

technologies, and all of the original IP that

it had developed over the years. However,

if rumours are to be believed, it appears

as though I-Imagine may be on the verge of

a resurrection – at least in spirit, if not in

name. Apparently, Dan is busy working on a

title for the Xbox360 at the moment through

MI Digital and has re-hired some former

employees of I-Imagine, but nothing has been

officially announced yet. So while the title

of I-Imagine’s last game may have seemed

prophetic at one time, it may turn out not to

be the case in the foreseeable future ...

* The most notable changes were to make textures a lower resolution, reduce the polygon counts of various meshes, and redesign the GUI for
the PSP’s screen.

UNLEASHING THE

SA’S biggest gaming expo gets a game development kick

TAILPIECE

36DEV.MAG ISSUE 18

One of the most exciting events on the Game.Dev calendar this

year was the rAge 2007 gaming expo, dedicated to games, tech-

nology and a host of related pursuits. Game development just

so happens to fit under this generous umbrella, and the Game.

Dev organisation has established a firm presence at the expo for

the past two years. Over the next few pages, you’ll be treated to

a healthy dose of eye-candy and some visual depictions of what

really goes on at rAge. Browse through and enjoy – we hope it

encourages even more people to come next year!

TAILPIECE

37DEV.MAG ISSUE 18

THE SETUP
Big expos like this don’t just pop into existence, you know. There’s a hefty amount of advanced and not-so-advanced planning that goes into

sprucing up the final product, including a fair share of grunt work and sessions of standing around while looking confused. It was worth it,

though. The Game.Dev stand ended up sporting some very fancy features, including a rear-projected display for the presentations.

Danny “fast-like-ninja” Day sets up the stand in approximately 0.42 seconds, fetches an audience and finishes it all off with a sweet ninja pose.

Our ammunition. We pack about a hundred of these babies.

Luma’s stand freshly set up and, as we soon discover, completely
blocking our own.

Luma hands us some very pretty posters and demo computers to draw
in those people who enjoy bright colours and loud noises.

The food court. Our new master. Miniature computer cases — we all wanted one, really.

TAILPIECE

38DEV.MAG ISSUE 18

THE TALKS
Presentations and workshops were one of the major reasons for Game.Dev’s presence at rAge. Several of these talks were scheduled on

each expo day, presented by various professionals involved with game development in some way or another – including representatives of

South Africa’s current flagship studio, LumaArcade.

Another wary spectator wanders into a Game.Dev presentation, nervously looking out for any traps. TV cameras too!? We’re famous!

Retrotoast’s Cadyn Bridgman gives audiences something to gawk at. Dale best from Luma also gives presentation a go while Ninja Danny
strikes more poses. A formidable team indeed.

TAILPIECE

39DEV.MAG ISSUE 18

THE COMPETITIONS
Prizes! The word is always a drawcard, especially amongst those who stand a good chance of winning. Sure, not all of Game.Dev’s competi-

tions at rAge had prizes attached to them, but compensation did come in the form of a single game-making competition which had a whop-

ping R10 000 cash pool tied to it. The rAge expo was deemed an ideal spot to present the winners with their prizes.

Danny Day. Evangelist. Mindset also have their say. They threw the money at us, after all.

The three winners of Comp 15. None of them really wanted to be on camera.

“Whaddaya mean, we don’t get to keep the
oversized cheques?!”

“ATTAAAAAAACK!” “Okay! Okay! You can keep them! Just please
don’t stab me!”

TAILPIECE

40DEV.MAG ISSUE 18

THE PEOPLE
rAge just wouldn’t be complete without all the people there to make it happen. Gatherings like this quickly foil the all-too-common per-

ception that devvers are all exclusive loners. Events such as Game Dev Idols, a meet and greet and even an open discussion forum were all

available for people to take advantage of, and less formal gatherings were frequent. Community involvement is the backbone of Game.Dev.

Genuine happiness, or mind-altering sub-
stances? You decide!

“And if I turn this way, you get a beautiful
view of my left cheek!”

We found him in a corner while cleaning out,
and decided to keep him as a pet.

He doesn’t work for Luma, but we like to pretend he does.

“A cellphone, you say? What a truly remarkable device!”

Wait, what?

Hotdogs. They bring people together. Then they get eaten.

That’s all, folks! We hope you all come along to rAge 2008! For further plans and events, remember to check out www.gamedotdev.co.za

