
February 2008

A MASSIVE

50
PAGES
THIS ISSUE!

THE “I”
EDITION

IRRLICHT, IGF AND INNOVATION

SOUTH AFRICA’S PREMIER GAME DEVELOPMENT MAGAZINE

TUTORIALS

REGULARS

FEATURE

REVIEWS

DESIGN

TAILPIECE

Ed’s note 03

From the net ... 04

Mr Gebhardt, I presume? 07
A look at the man responsible for the Irrlicht tool

Aquaria 11
The review was promised, and we delivered

H-Craft Championships 13
Physics-based hovercraft racing action

TIGSource 14
A great indie gaming blog

5 Days a Stranger 15
A horror point-n-click adventure. Part 1 of the Chzo Mythos

7 Days a Skeptic 16
Part 2 of the Chzo Mythos

Blender — intermediate series 18
Mapping pictures onto 3D objects

Blender — extra 21
Learn about the power of compositing with post-process filters

Game graphics with Photoshop 24
Get some handy knowledge on backdrops

Irrlicht 27
An introductory article for our new series

How to use Perlin Noise 29
A comprehensive guide to an incredibly useful trick

Pump it! 36
An exploration of sound-based gameplay

Project SCR 40
A work in progress dealing with trolley mayhem

Ultimate Quest 43
Postmortem of a really quirky text-based game

Summit of Achievement 46
A roundup of the IGF finalists for 2008

02DEV.MAG ISSUE 20

EDITOR

Rodain “Nandrew” Joubert

DEPUTY EDITOR

Claudio “Chippit” de Sa

SUB EDITOR

Tarryn “Azimuth” van der Byl

DESIGNER

Brandon “Cyberninja” Rajkumar

WRITERS

Simon “Tr00jg” de la Rouviere

Ricky “Insomniac” Abell

William “Cairnswm” Cairns

Bernard “Mushi Mushi” Boshoff

Danny “Dislekcia” Day

Andre “Fengol” Odendaal

Luke “Coolhand” Lamothe

Rishal “UntouchableOne” Hurbans

James “NightTimeHornets”

Etherington-Smith

Gareth “Gazza_N” Wilcock

Sven “FuzzYspo0N” Bergstrom

Kyle “SkinkLizzard” van Duffelen

WEBSITE ADMIN

Robbie “Squid” Fraser

WEBSITE

www.devmag.org.za

EMAIL

devmag@gmail.com

This magazine is a project of

the South African Game.Dev

community. Visit us at:

www.gamedotdev.co.za

All images used in the mag are

copyright and belong to their

respective owners.

Fun fact: this issue is HUGE. In

fact, if this magazine was actu-

ally printed out, you probably

wouldn’t be able to carry it JUST

because it’s so big. How awesome

is that?

REGULARS

03DEV.MAG ISSUE 20

DEAR READER ...

Hello and welcome to the new year! Sure, the greeting has probably gone a bit stale by now,

but this is our first opportunity to hail you after the annual Dev.Mag siesta, so why not?

A great many things have happened over the past two months and we’re practically beaming

with joy at this release. As with last year, the Dev.Mag team really outdid themselves in an ef-

fort to make this first edition of 2008 into something truly special. No, really, did you see the

big flashy proclamation on the bottom corner of this month’s cover? This issue has broken the

50-page barrier, officially making it the biggest Dev.Mag to date. And that equals a lot of juicy

content for our beloved readers.

The game development world is going crazy right now, and we’re doing our best to keep up with

all of the most awesome stuff. For every article that’s made it into this issue, there’s another

one lying around that had to be either cut or delayed so that we could actually release this edi-

tion in (relatively) good time. Thanks in particular to all those readers who have submitted their

own articles for the open Opinions section over the past month — unfortunately, we haven’t

been able to accept any at this time, but we encourage the community to get involved and we

do hope to publish some work in the near future.

Oh, but one charming little paragraph left and I still haven’t told you about what’s in this issue.

To be frank, though, that would be really difficult to do even if I had a full two pages to work

with. My advice at this stage is to just flip through and see what you like — with this much con-

tent at your disposal, you’re bound to stumble across something interesting.

Best of wishes, dear reader, for the year ahead. Keep on devving!

RODAIN “NANDREW” JOUBERT
EDITOR

Quite a few of the Dev.Mag staff have

been involved in the open beta testing of

Audiosurf, one of the contenders for the

grand prize at this year’s IGF. Simply put,

we want the retail version. Now. It’s an

awesome game, and music just isn’t the

same without it. Find this gem at

http://www.audio-surf.com/

REGULARS

04DEV.MAG ISSUE 20

ADVENTURE GAME STUDIO 3.0 RELEASED

http://www.adventuregamestudio.co.uk/

If you’re a fan of this popular (and

free) adventure game creation

tool, then you’re in luck. AGS just

recently upgraded to version 3.0,

promising many new and useful features including

better hardware acceleration support, a revamped

interface and the removal of many previous hard-

limits on development aspects such as views and

GUIs. Adventure Game Studio has long been a fa-

vourite of many game developers, and classics such as A Tale

of Two Kingdoms, the Chzo Mythos and the more recent Art

of Theft were all created with this tool.

YOYO WINTER COMPETITION WINNERS

http://glog.yoyogames.com/?p=51

The eagerly anticipated results of Yoyo’s first competition have been

released! Using the Game Maker software, participants had to cre-

ate a winter-themed game in the space of one month. Competition

was pretty stiff and a lot of high-quality

entries were submitted, but eventually

the top three games were selected to

receive cash prizes (starting with USD

$1000 for first place), accompanied by a

list of honourable mentions. More details

are on the blog.

TOP 20 INDIE ARCADE GAMES

http://www.indiegames.com/blog/articles/index.php?c=ac&y=2007&gid=0

For a list of some awesome games from 2007, you can do far worse than

taking a look over here. With titles such as Trilby: The Art of Theft and

Frozzd populating the list, it looks like the new year has quite a bit to live

up to in terms of indie

gaming. All of the games

on this list are freeware,

and a few of them will

be appearing in Dev.

Mag’s pages within the

next couple of issues.

REGULARS

05DEV.MAG ISSUE 20

COMP 17: “END!”

http://forums.tidemedia.co.za/nag/showthread.php?t=3073

Game.Dev has just launched its first competition for the new year,

centred around playability and brevity. The aim is for players to

construct a game that goes on for no longer than 10 minutes.

Whatever genre, whatever goal you may have, the only rule

is that the game has to end before that ten-minute mark.

If you’re in South Africa and want to try your hand at

a quick and fun game development competition, hop

onto the forum and give it a whirl. The competition is

open until the end of February.

GAMASUTRA’S “20 MYSTERIOUS GAMES”

http://www.gamasutra.com/view/feature/3485/game_design_essentials_20_.php

An interesting snippet from one of our favourite news sites, this feature has a look

at all manner of games which have some sort of “mysterious” or hidden element in

them. Everything from secret blocks in Super Mario to complex behind-the-scenes

algorithms which determine the very fate of your in-game character all count as

being mysterious in some ways, and this article deals with everything from the cu-

rious to the bizarre. An interesting read which allows readers to think about game

design in a new way.

GISH 2 DEVELOPER’S BLOG

http://crypticsea.blogspot.com/

The heading says it all, really. Crea-

tors of the highly popular ball-o’-tar

platformer Gish are furiously working

away at a sequel. If you’re keen on

checking out some interesting news

posts, or just want to see what these

guys are up to, then take a look at

their blog for some more info. If you

don’t have the original Gish yet, word

is that the game is available on Steam

for just less than USD $5 ...

REGULARS

06DEV.MAG ISSUE 20

BATTLESHIPS FOREVER ON GAMASUTRA

http://www.gamasutra.com/php-bin/news_index.php?story=17202

One of the Game Maker entrants in this year’s IGF finals, Battleships Forever

has stormed in with its innovative gameplay and in-depth look at strategy. This

Gamasutra interview takes a look at creator Sean Chan’s history, his motivation

for the project and what he feels is most important to consider when creating

a game like Battleships Forever. A worthwhile read, and if you want to try the

game for yourself be sure to look at this month’s Tailpiece for a link and brief

description.

TRILBY: THE ART OF THEFT

http://www.escapistmagazine.com/content/games/yahtzee/artoftheft

Ben “Yahtzee” Croshaw seems unstop-

pable as of late. His latest offering is a

cunning little thievery game starring one

of Yahtzee’s recurring game characters,

the objective being to loot and sneak

your way through Chapow City. An im-

pressive title which becomes even more

impressive when one considers that it was

made using the Adventure Game Studio

– a prime display of the tool’s flexibility.

Expect a full review next issue.

AUDIOSURF COMING SOON

http://www.audio-surf.com/

After two beta sessions, Audiosurf has

accumulated a ball of hype and excite-

ment, with eager players lining up to get

their hands on a full release. Audiosurf’s

blog regularly makes note of any progress

or major changes made, and the beta

forum is already open to those who

want to chat about the game or

check out a nice bunch of fan

art. Audiosurf is due for re-

lease in February and is currently a

contender for the 2007 IGF Grand Prize.

FEATURE

07DEV.MAG ISSUE 20

MR GEBHARDT,
I PRESUME?

DEV.MAG TALKS TO THE MAIN MAN OF IRRLICHT
by Sven “FuzzYspoON” Bergstrom

Interestingly enough, there are people out

there that give stuff away for free. They

say nothing is free, but in the cutting-

edge realm of software development there

are always a handful of developers that break

the mold. Nikolaus Gebhardt, creator of

Irrlicht3D, is one of those developers, and his

projects are most certainly groundbreaking.

We decide to throw a few questions his way.

Mind telling us a bit about yourself?

My name is Nikolaus Gebhardt and I am living

in Vienna, Austria. I’m a software developer

and with my company ‘Ambiera’, I’m sup-

porting other companies to develop computer

games. Most people know me from my work

on a software library named ‘Irrlicht’, now a

huge project which I started some years ago.

As the creator of the Irrlicht engine,
can you tell us how it came about?

In 2002, when I was employed at a game

development company, I used to work with

various commercial 3D engines and was dis-

satisfied with nearly all of them. I wanted to

have a small, fast and

simple framework for

quickly rendering 3D

graphics, with nice

FEATURE

08DEV.MAG ISSUE 20

documentation and which should also work

on more platforms than just Windows. So I

decided to sit down and write such a library

myself. After some months, I made it open

source, named it ‘Irrlicht’ and published it on

Sourceforge. And because people apparently

liked the library, it became a success.

Is Irrlicht becoming/being what you
hoped for?

No, Irrlicht hasn’t become what I hoped for

at all: I never would have thought that Ir-

rlicht would become as popular and liked as

it is now. We now have a huge user base with

more than 8000 registered members in the

English forum alone and about 400 downloads

of the Irrlicht Engine SDK per day. I’m getting

flooded with feature requests and other mails

regarding Irrlicht, and I have to spend at

least one hour per day just to answer or at

least read those mails every day and do other

Irrlicht-related administrative tasks, so that

I don’t have that much time for develop-

ment anymore. Fortunately, we are now a

team working on Irrlicht, and Christian, Gaz,

Luke, Tom and Dean are doing a great job at

improving Irrlicht, and Alvaro, Jam and oth-

ers are taking care of the Forums, giving me

a bit more time.

What are your future ideas for Irrlicht?

There are a lot of new features in discussion,

like adding the newest and most popular 3D

rendering techniques and bringing Irrlicht

to other platforms (PocketPC for example).

Unfortunately, Irrlicht is a hobby project and

done in the free time of all team members,

and that’s why we usually don’t speak that

much about features to come and release

dates. It is not always possible for us to re-

ally uphold these planned features, and in

order not to disappoint users, we prefer not

to speak that much about things like these.

But one thing is sure: We will continue to

develop and improve Irrlicht where we can,

and it will stay open source and free as long

as we live

FEATURE

09DEV.MAG ISSUE 20

QUICK QUOTES

Console or PC?

Never been a console user, maybe

because I’m a programmer: I’m used

to the fact that sometimes things don’t

work and that I have to find a solution

myself.

Linux, Windows or Mac?

If I had to choose between Linux, Win-

dows and Mac, I still would definitely

choose Windows. I am using all three,

but my main development platform is

still Windows. Not only because most

of the users are using Windows as well,

but because it is more comfortable,

especially for programmers. Although

claiming to be a developer OS, Linux

still hasn’t a decent IDE like Visual Stu-

dio, and MacOSX is a bit too insecure

for me personally.

You also created Ambiera, the com-
pany that makes Irrlicht-related/inde-
pendent tools for free. How did this
start?

I founded Ambiera in an attempt to support

Irrlicht a bit more. Irrlicht is completely free

and I don’t get any money from it, although

a lot of companies use it in their commercial

products. Ambiera provides some additional

libraries and tools which can be bought for

commercial use (they are still free for non-

profit or free games and applications) and

more importantly, it gives me a bit more free

and flexible time for Irrlicht development. As

a full-time employee I wasn’t that flexible.

What drives you to make all your awe-
some tools for free?

That’s a good question. I think I could have

made quite some money if I had developed

Irrlicht as commercial library from the begin-

ning. But on the other hand, Irrlicht would

not be that popular if it wasn’t open source.

The decision to release Irrlicht as an open

library in 2002 was basically made because

I wanted to give something back: I’m using

so many open source tools, libraries, and

even open source operating systems. The

other tools like the audio library irrKlang

and the editor irrEdit are free for non-com-

mercial use so that Irrlicht users - which are

about 90% hobbyists - may use them without

problems.

If you had advice for indie developers,
what would it be?

I’d say “give something back”: There are so

many indie developers who are using free

and open source tools to make profit, but are

only rarely contributing their changes and

additions back. But in most cases they would

even benefit from this. Fortunately, there are

some exceptions.

DB SAYS ...

Hey, interested in giving this tool a shot yourself? Check out

our Irrlicht starter series, beginning this issue. Also be sure to

visit Irrlicht’s home page at http://irrlicht.sourceforge.net/

Aquaria
http://www.bit-blot.com/aquaria/

REVIEW

11DEV.MAG ISSUE 20

by Claudio “Chippit” de Sa

A stunning setting, an involved story,

and a gargantuan world to explore.

This is the promise of Aquaria, an

indie title nearly 2 years in the making and

winner of last year’s IGF grand prize. Diving

into this action-adventure styled game is

definitely an exciting prospect.

The idyllic land of Aquaria is a vast undersea

world consisting of deep abysses, massive

open caverns and narrow passageways,

inhabited by hundreds of aquatic beings,

some peaceful, some hostile, all very unique.

You’ll find yourself drifting through the wa-

ters, admiring how light filters through cave

ceilings, how the entangled reefs sway as you

swim through them, how certain creatures

are drawn to Naija as she sings, and how

right everything feels.

Naija, the mermaid the player controls,

begins the game with no memory of her

past and little ambition for her future. The

appearance of a mysterious figure prompts

sudden curiosity in her existence and she sets

out in a massive quest to discover

who she is, whether or not

she has any kin, and why

the world doesn’t feel

quite so right

immediately

outside her

home waters.

Possible routes of

exploration branch

out exponen-

tially once Naija

penetrates the open

waters outside her more

familiar personal boundary

which also, conveniently, serves

as the boundary of the rather

extensive trial

version. In fact, the

sheer size of the world

is rather overwhelming

and this fact is only com-

pounded by the general lack of direc-

tion supplied by the game. You may find

that, because of an unfortunate choice of

paths, you’ll reach many avenues where you

are unable to proceed due to lack of correct

abilities. This results in occasional frustration

with the lack of apparent progress. However,

persistent exploration will usually yield a

path where secrets can be discovered or

advancement can be made, and the feel-

ing of frustration is usually replaced with a

new sense of awe at the discovery of a new

locale.

Among the areas Naija will visit, impressive

both visually and in scale, are ruined cities

of mysteriously absent civilizations, mas-

sive reefs, huge open waters, and a deep,

gloomy abyss as dark as a void. Most of these

regions will yield new powers to Naija as she

explores them, progressively

unlocking more areas in

the process as well

as enticing her to

venture

further and

further in

pursuit of

the secrets of

the underwater

world. These

ventures often

culminate in a

major boss conflict,

usually for the most im-

portant song of the region.

As she explores and discovers

new powers, Naija experiences

REVIEW

12DEV.MAG ISSUE 20

flashbacks of her own history or the history of

the area and its peoples. These serve to ad-

vance the story, as well as provide a reward

for the player’s efforts.

Naija’s greatest and most unique asset,

her singing voice, grants her the ability to

manipulate the magical energy of Aquaria,

which she refers to as the Verse, allowing her

to move massive objects, create an energy

shield impervious to projectiles, or even

completely change her physical form. To

perform a magical feat, Naija needs to sing a

specific string of at least 3 notes from a cir-

cular 8-note scale. On their own, single notes

also have other uses including cracking open

certain plants, attracting sea life of the same

‘colour’ as the note, or for solving other

miscellaneous puzzles. Alternate forms grant

her special unique traits, including offensive

attacks, the ability to traverse very narrow

passageways, thicker skin and other, more

exotic, powers. These new transformations

represent the progress in the game, with new

abilities granting Naija access to previously

untraversable environments, once again

exponentially increasing potential avenues of

exploration.

Another unique ability in Naija’s inventory

is her ability to create special treats from

various ingredients scattered throughout the

world. While the system is open to experi-

mentation and clever trials may afford new

recipes, the major source of new formulae

is simply the act of finding the item in ques-

tion. As soon as Naija discovers a new food

type she will intuit the ingredients required

to make it, whether they are other complete

foods, raw ingredients, or a combination of

the two. More powerful items are usually

created by combining three ingredients at

a time. Such foods cannot be created out in

the open ocean like simpler concoctions and

must be prepared in special kitchens. This

item creation system adds an extra layer of

motivation for world exploration, since many

rarer ingredients and recipes are hidden in

secret or hard-to-reach areas.

All in all, Aquaria is a highly polished

representation of what the indie scene is

capable of, and, despite a few minor design

flaws, particularly with the massive scale

of the world, it is an incredible experience.

Whether or not it warrants its near triple-A

price tag is likely a debate that will rage on

for months to come, but it certainly is one

of the most impressive games ever to be cre-

ated by a team as small as Bit-Blot’s.

H-CRAFT CHAMPIONSHIPS
http://www.irrgheist.com/

REVIEW

13DEV.MAG ISSUE 20

by Sven “FuzzYspoON” Bergstrom

Obviously a fan of indie games can

never miss out on seeing another

racing game, but a futuristic space

sci-fi racer is a unique title to see coming

from the two-man development team in

Germany called Irrgheist.

This game is quite a challenge considering

the unique, self-made physics system which

breaks all egos on first impression. With the

large number of maps that come with the full

game, it seems like an endless supply of fun

mixed with some interesting AI. The AI gets

a head start for 3 seconds, which forces you

to increase skill rather than finding shortcuts

to beating the game. The game’s AI has been

commented on as being too difficult, but it

is far from impossible to finish H-Craft. With

the ability to record all your races and stack

up against your friends, there’s also a great

opportunity present for you to challenge each

other to a time attack. The developers hold

challenges with times based on what they

achieved while developing the game, which

gives you even more to aspire to.

The demo leaves the feeling that the game

may get monotonous after a while, but the

full version adds a large amount of intriguing

maps and interesting challenges. Utilising the

Irrlicht engine for rendering graphics, the

team introduces some interesting techniques

for effects. Irrgheist use the cross-platform

OpenAL for sound, XML-based settings and

files, and utilise a mixture of common for-

mats to create a map format that is simple

but complex at the same time. They have

built in-house tools to integrate the map

meshes into their engine, as well as some

great tools for making AI which helped their

development process a huge amount.

Indie developers creating great games are

becoming more and more common nowa-

days. It’s advisable to keep an eye on this

company, as they have great plans for more

games of even higher quality.

TIGSource
http://www.tigsource.com/

REVIEW

14DEV.MAG ISSUE 20

by Simon “Tr00jg” de la Rouviere

Where would you go to get your

dose of indie-gaming news? Where

would you go to have a discussion

with fellow indie developers? Where would

you go to learn about the creation of mono-

cles? Where would you go to find out who the

sexiest indie developer out there is? You can

find all this, tigersauce and more at www.

tigsource.com.

Let’s start with what TIGSource is. It stands

for “The Independent Gaming Source” and

is a website/blog dedicated to bringing you

info on the independent game development

scene. It started humbly in early 2005 and

has since grown a lot, eventually passing

hands to Derek Yu, the artist behind the

incredible indie game Aquaria.

So what sets TIGSource apart from other

blogs? The posts are, first of all, well-written

and make for plenty of chuckles. Instead of

just telling us the news, it adds its own flair.

Another thing that TIGSource has going for it

is a great community which includes a host

of well-known indie developers. TIGSource’s

forums are jam-packed with great threads

about indie games, indie life and random

awesomeness. The Feedback section is a re-

ally great place to get decent feedback from

other developers and the master of critique

himself, Guert. TIGSource’s community is

always willing to help wherever they can.

Amongst the above, TIGSource regularly hold

interesting competitions like “Sexiest Indie

Developer” and “A B-Game competition” (the

latter being one where you purposefully have

to make a shoddy game) and recently an

interactive fiction competition.

I highly recommend for any developer to

visit TIGSource to either have their dose of

indie gaming news or just be a part of a great

community. After visiting TIGSource, it leaves

one with a feeling that indie games are the

best thing in the universe and that it truly

is something to be a member of the indie

scene.

http://www.fullyramblomatic.com/

REVIEW

15DEV.MAG ISSUE 20

by Ricky “Insomniac” Abell

5 Days a Stranger is a freeware point-

and-click adventure game developed

by Ben “Yahtzee” Croshaw. “Yahtzee”

has a become a bit of an internet star lately

with his weekly video reviews called Zero

Punctuation, where he gives a funny and

sarcastic view on the game he reviews that

week. It was a great surprise for me to find

out that he also made games, and thus I had

to give 5 Days a Stranger a whirl.

Going into the game, it’s easy to expect

something with loads of sophisticated humour

(given the reputation of the developer),

but players will instead find a very well-de-

signed and engrossing horror title. The game

is played as Trilby, a mysterious man who

describes himself as a gentleman thief.

Things start off like a regular gig for Trilby

– the abandoned DeFoe Manor is filled with

many valuables ready for easy picking by

the talented burglar. Unfortunately things

don’t go too smoothly and just after break-

ing in Trilby finds himself trapped in the

manor. However, he soon discovers that he

isn’t alone, as there are a few other people

who also seem to be a prisoner within this

mysterious place. Now it is up to the player

to explore the mansion and find a way out

within 5 days.

As mentioned before, this is a horror game,

but not in the usual ooh-look-everyone-has-

turned-into-a-zombie-who-wants-to-sample-

my-brain sense. Instead, what makes this

such a captivating horror is the atmosphere.

It doesn’t have shiny graphics at its disposal

to scare you but it has many other things.

The sound effects – such as footsteps in the

background when you’re in a quiet, empty

room – can easily send chills down your spine.

The story and gameplay also pulls you in and

has you hesitating before you click a door in

fear of what will be behind it. The further

you play, the more interesting things get, and

you can’t stop playing until the mystery is

solved.

The gameplay is your fairly standard point-

and-click fare where you talk to people,

collect items along the way and also combine

them to solve problems. Items you pick up,

such as a diary, can sometimes progress

the story and give a deeper insight into the

characters – a nice touch. The only thing that

seemed to mar the whole experience was a

point in the game where reacting incorrectly

in a tense and fast-paced situation would kill

the player and force them to go back to a

manual save point – a pain if you don’t hap-

pen to save your game often.

Overall, 5 Days a Stranger doesn’t do any-

thing new or break the mould but it tells a

great, fascinating story with style and for

an adventure game you can’t ask for much

more. If you’re new to adventure games, go

ahead and give this a try, though you may

need a walkthrough on standby rather than

risk giving up at some point and missing out

on an intriguing story.

http://www.fullyramblomatic.com/

REVIEW

16DEV.MAG ISSUE 20

by Gareth “Gazza_N” Wilcock

It’s a quiet day in the Caracus Galaxy.

The starship Mephistopheles sullies forth

across the sea of stars, its six-person skel-

eton crew boldly scouting what no six-person

skeleton crew has scouted before. Of course

(being a horror game and all), trouble is

inevitable for the intrepid crew, and it comes

their way in the form of a nondescript metal

box floating innocently through the void...

Built using Chris Jones’ free Adventure Game

Studio software, 7 Days a Skeptic is the

second game to be released in Ben “Yahtzee”

Croshaw’s Chzo Mythos series, and deals with

the (literally) far-reaching consequences of

the events covered in its predecessor. Set

roughly 400 years after 5 Days a Stranger, the

player is placed in the role of Doctor Jonath-

an Somerset, the Mephistopheles’ resident

psychologist, who along with the rest of the

crew is subjected to a series of inexplicable,

and increasingly violent, paranormal events.

It isn’t high literature, but it isn’t meant to

be. 7 Days, like its predecessor, attempts to

emulate the tension of ye olde slasher movies

of yore, where a set of characters is confined

within an isolated environment while an

unpredictable and unknown killer stalks the

corridors. Fortunately, Yahtzee hits the nail

on the head in that regard, producing a sur-

prisingly unnerving atmosphere by using both

the setting as well as some very unsettling

dream sequences/visions. Fortunately the

writing and plot progression are solid given

the premise, and the story includes some

twists and turns that keep you interested

throughout.

Gameplay-wise, the game is structured very

much like 5 Days a Stranger in that the plot

takes place over the titular seven days, with

each “day” consisting of a series of puzzles

that needs to be solved in order to progress

to the next day. The interface is an expanded

version of the classic verb coin system.

Right-clicking on objects brings up a set of

verbs and inventory items, which, when

clicked, perform the relevant action or use

the relevant item. This system does tend to

give interaction a very staccato feel, since

REVIEW

17DEV.MAG ISSUE 20

the menu needs to be invoked constantly

for every item the player wishes to interact

with rather than allowing a default action to

be performed. Nonetheless, the interface is

clear and functional and allows the player

to see at a glance all the interaction options

that are available, rather than forcing them

to dredge through inventory screens or cycle

through endless verb cursors. The graphics

are rudimentary, but sufficiently detailed to

serve their purpose, and you’ll quickly find

yourself ignoring the MS Paint-y look of the

artwork as you play.

Naturally, the game isn’t without its niggles.

While the puzzles are for the most part logi-

cal and solvable with a bit of brainwork, the

game has one or two instances where the so-

lutions are outright cryptic. Worse still, these

tend to take place during high-pressure chase

scenes which, while succeeding in heighten-

ing the tension, start becoming rather tire-

some after your n’th death. Yahtzee is also

rather fond of hide-and-seek style puzzles

where one is forced to comb every nook and

cranny of the ship in order to find a relevant

NPC. Admittedly, it creates a good incentive

to discover the layout of the ship towards the

beginning of the game, and makes the char-

acters feel like they actually live on the ship

rather than being superglued to their posts,

but after a while the frequency with which

you’re forced to go through this exercise

starts to feel more like padding than proper

game progression.

Don’t let the above deter you, though.

Overall, 7 Days a Skeptic is a solid point and

click game that is well worth your attention,

especially considering its price (free, or $5

US for an expanded special edition). It’s also

an oft-cited (and dual-AGS-award-winning)

example of what can be accomplished with

Adventure Game Studio given sufficient time

and effort, making it a worthy reference

if you plan on using the package for future

projects. If atmospheric point-and-click hor-

ror is your thing, you could do a lot worse.

his tutorial will show you how to use

Blender 3D to map pictures onto a 3D

object. The tutorial uses a simple

cube. By sticking pictures on the cube we

will make it resemble a skyscraper. This

skyscraper can then be ‘photographed’ in 3D

from any angle to be used in a game scene.

I am using a picture from

www.yotophoto.com as a texture. The

license for this picture states that it may be

used free of charge for private and

commercial use. Download the picture to

your computer and save it where you know

you will find it in a moment. The Blender file

and picture map is provided along with this

tutorial on the Dev.Mag website.

In essence, we will select each side of the

cube and place it on the picture of the

building. The way that we place it on the

image will determine the way that it is

displayed on the cube.

Open the blender file that is provided along

with this tutorial. On opening the file, you

will see a screen with two viewports, with a

button window below. On the left is the view

from the camera. The window on the right is

set to a UV/ Image Editor view.

We'll start right away by selecting the

building. Use RMB (right mouse button) to

click on the building in the camera view.

When selected, the building will turn pink (as

shown in the image below).

Press the FKEY. The view of the model

changes slightly. This is the UV Face Select

view which we will use to select the

different sides of the model.

Press AKEY (select/ unselect all) until you

have all the faces (sides of the model)

selected.

Now shift you attention to the window on the

right. Clicking on the Image button on the

menu bar allows you to open the image that

we want to use as a picture map. This will be

the picture of the building that I have

provided.

This is what the UV/ Image Editor view

should look like when the picture has been

successfully loaded.

After you have loaded the image of the

building in the UV/ Image Editor window,

move your cursor to the left viewport, and

press ALTKEY + ZKEY until you see the image

of the building displayed on the model.

TUTORIAL

BLENDER TUTORIAL
Mapping pictures onto a 3D cube

By Stefan “?rman” van der Vyver

T

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

As you can see, the picture of the building is

upside down, and we can see blue sky along

the edges. We will sort that out with the

next step. With your mouse cursor over the

camera view on the left, RMB select the front

face of the model. Press RKEY and use the

popup menu to rotate the UV-coordinates

until the picture of the building is the right

side up.

Now we are going to use the 4 points that

define the “face” of that one side of the

model, to make the correct part of the

building fit onto the model. We do that by

moving the points (vertices) inside the UV/

Image Editor window.

With the single side of the building selected

in the camera view, shift your attention to

the right hand view. RMB select a single point

(vertex). Then press GKEY (grab) and move

that vertex in the window. LMB (left mouse

button) click to confirm where you want it.

You will see that the picture on the model is

stretched accordingly.

By positioning the vertices on

the picture of the building,

we can position (map) the

picture of the building onto the model. This

will even allow us to map a building that was

photographed at an angle, like this one.

In the picture at the bottom of the page, I

have positioned the vertices in the UV/

Image Editor Window so that the correct

part of the building is mapped onto the

model. The next step is to RMB select one

of the other faces on the model. Then do

exactly the same with the vertices in the

UV window.

 To see the building from a different

view, position the mouse cursors over

the camera view, and press:

 NUMPAD1 for front view,

 NUMPAD3 for side view,

 NUMPAD7 for top view,

 NUMPAD0 for camera view.

Alternatively, use the MMB (middle

mouse button) to pan around the

window. Holding down SHIFTKEY while

you use the MMB will allow you to pan

the whole viewport. If you get lost, refer

to the online Blender manual that can be

found at www.blender.org.

Remember that you only need to map the

sides that the camera will see. Don't waste

time on doing more than you should to get

the right effect. I'm sure that there are more

elements of your game/ project waiting.

When you are done mapping all the sides that

you want, position the

mouse cursor over the left

viewport and press FKEY

to leave UV Face Select

mode.

Now we need to add a

material to the scene. I

have already set up

lighting and a camera.

Ensure that the bottom

window is on the materials view. Click the

Add New button. This adds a new, standard,

gray button to the model.

We need to add the picture to this material,

and tell it to use the UV coordinates to place

the picture on the model in the correct way.

Select the leopard skin icon in the menu bar.

This adds a texture to the current material.

In this way we can add the picture as a map.

Click the Add New button. Then click on

None and select Image from the menu. Your

buttons window should now look like this:

When you click on the double arrow icon next

to the word “Load” on the left-hand side,

you should see the picture file as an

available option. Load the picture file. When

you have correctly loaded your image map,

the texture button window should look like

this:

TUTORIAL

Go back to the materials window. On the

right hand side of the materials window, you

will find three tabs: Texture, Map Input and

Map To. Select Map Input. Once you have

selected Map Input, you should see the

following menu:

Note: In Blender you can scale menus by

using the – and + key by the NUMPAD. If your

menu runs beyond the border or your

window, simply scale the menu smaller.

Make sure that you activate the UV option, as

shown in the picture. You can now hit

F12KEY to make a render of your building.

I would suggest that we bring down the

shininess (specularity) of the material. That

will probably yield a better render result. Do

this by clicking on the Shaders tab and bring

the Spec value down to zero.

The last thing we need to do is to set the

render format so that you may render an

image with a transparent background. This

will allow you to compose more than one

render together in an external

image editor, or layer an image on

top of another using the

transparency (alpha channel). Go

to the render button and ensure

that they are set as in the image

alongside.

The PNG format can hold

transparency values, while

the RGBA setting tells blender to

render colors (Red, Green, Blue) as

well as an Alpha channel. Press F12 to

render the building model.

When the render is finished,

you can press F3KEY to save

the image.

Using this process it is quite

feasible to build an impressive

cityscape with a couple of hours, with

buildings placed entirely at your own

will.

Best wishes for the use of Blender 3D in

your game development. This software

is a great tool that yields professional

results, provided that you take the time

to investigate it.

TUTORIAL

his supplementary Blender tutorial

will guide you through a lesser-used,

yet flexible and powerful, Blender

feature: The post-process compositor. The

compositor has the ability to apply special

filters and effects onto a completed blender

scene. Effects range from simple depth of

field and bloom to complex effects only

really limited by imagination. While it is

possible to directly apply this tutorial into

any existing Blender scene, I recommend you

download the scene available on the Dev.Mag

website to begin with.

To get started, we need to tell Blender that

we’re going to be applying post-process

effects with the compositor. To do this,

switch to Scene buttons and click the ‘Do

Composite’ button on the Anim tab.

To set up composite effects you need to use

the node editor. You can split the workspace,

but since we won’t really need the 3D view

you can dedicate your primary window to the

node editor. Since you’ve probably never

used the node editor before, it warrants a

quick explanation. The node editor allows for

advanced editing techniques for materials

and compositing, allowing you to chain

together complex effects in any order to

produce the required end result. Any

explanation of its use can be distilled down

to adding different objects to the chain,

linking their input and output nodes together

to produce the required effect.

Like most Blender windows, the controls in

the node editor are equivalent to the 3D

view, with the exception that left-click

selects nodes, and the right-click brings up

the add menu (similar to the function of the

spacebar in 3D view). When first opening the

node editor it will default to material editing

mode. We’re not going to be using that now,

so switch over to Composite mode by clicking

the button at the bottom of the node editor

window. Then click ‘Use Nodes’ to enable

the composite nodes. Now we’re all ready to

go.

The node editor should already have two

objects visible. Render Layers, and

Composite, with the output ‘Image’ node of

the Render Layers object connected to the

input node of the Composite object. If not,

hit spacebar and add the two nodes (Render

Layers under input submenu; Composite

under output) and connect them accordingly.

To connect nodes, drag the output node over

to the input node you want to connect it to,

then release the mouse button. A line will be

drawn from the one to the other signifying

that they are linked.

TUTORIAL

BLENDER TUTORIAL
Compositing

By Claudio “Chippit” de Sa

T

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

The first thing we’re going to be doing to this

render is adding a depth of field effect to

provide a focal point to the otherwise rather

busy scene. Add a Defocus filter in the Node

Editor, then link the Image output of the

Render Layers object to the input of the

Defocus object, and the output of the

Defocus object to the input of the Composite

object. The Defocus object also takes one

more optional input in the form of the Z-

Buffer. The Z-Buffer contains the depth value

of every pixel on the screen so that the

Defocus filter can determine how much to

blend each part of the image. Connect the Z

node from the render layers object to the

appropriate defocus input node and disable

the ‘No zbuffer’ option to tell the filter to

use the zbuffer provided.

You’ll notice that rendering the scene now

won’t yield any changes. This is because we

have yet to set the focal length of the

camera as well as a variable that tells the

filter how much to blur objects as they move

further away from the focal point. To set the

focal length of the camera we need to go

back to the 3D view. Select the camera

object, and, in the edit buttons window,

adjust the

DoFDist value

to adjust the

focal point of the camera. Make sure that

you enable ‘show limits’ so that the focal

point will be displayed in the 3D view. Set

the value so that the focal point is

approximately at the blue cylinder object

near the front of the scene (Best done from

top view).

Back in the node editor, notice the fStop

value in the Defocus filter. This value

represents how much objects will blur as

they become more distant from the camera.

A lower value will increase the amount of

blur, with 128 being perfect focus. Because

our scene has generally very little in the

form of depth a value of around 4 will

provide best results. Be sure to disable the

preview option in the filter as well, to

provide a much higher resolution blur.

That’s it! You have now applied a depth of

field effect to this scene. If you have already

rendered the scene, you don’t have to render

it again to view the results. Because

compositing is a post-process effect, Blender

simply reapplies the effect onto the scene

you’ve already rendered. Press F11 to display

the results of the filter. Notice how a simple

depth of field effect dramatically changes

the points of interest in the scene.

The second effect we’ll be adding to this

scene is a filter to make the specular areas

‘glow’. To do this, we’ll need to grab an

additional input from the renderer, the

specularity pass, to use in post-processing. In

the scene buttons, under the render layers

tab, click the ‘Spec’ button to send an

additional render pass to the compositor.

You’ll notice an additional output node,

Specular, has now appeared in the Render

Layers node object. This represents the

render pass that highlights objects. You’ll

need to render the scene again to provide

this pass to the compositor. Once you’ve

done that, if you’re curious, you can connect

the Specular node to either a new Viewer

object (under Output) or to the Compositor

node to get a preview of what information is

contained in that node. We’re going to take

that specular information, blur it

significantly and then blend it back into our

scene.

TUTORIAL

Default composite setup

Defocus filter settingsCamera settings

Scene after DOF blur

Add a Blur filter object to the Node editor

and connect the Specular output to it. The X

and Y values in the Blur filter represent how

much it will blur the image in a certain

direction. Set them to 10 each. You can also

change the blur type from Flat to Gaussian to

produce a higher quality blur if you like, but

it is a slower process. Finally, we need to

blend this on top of our defocused scene for

the final output. To do that, we’ll need

another node object. Add a Mix object

(Under the Color submenu) to the Node

TUTORIAL

Editor, connect the output from the defocus

filter to the first input of the Mix filter, and

the output from the blur filter to the second

input. Change the drop-down box to ‘Dodge’,

and the factor value to 2.5. Finally, connect

the output on the Mix object

to the Composite node.

Pressing F11 will display the

final scene, with a defocus

filter and a slight bloom

effect applied.

The final blender file will also be available

from the Dev.Mag content section, as always.

Happy Blending.

ou're well on your way to creating a

complete set of graphics for a game.

You have already learned how to

create basic vector sprites and how to apply

some basic but effective animation. The next

step would be the character's surroundings.

You can use the methods explained in

tutorial two to create some neat vector

objects for your game. We have mainly

created vector images and haven't at all

touched on raster images. Well this skill is

particularly useful when creating large

images that may contain detail and needs

excellence. Images that are usually not

resized are images suitable to be raster

images. Think about a game such as Aquaria.

The backgrounds used in that epic game are

very detailed and are truly beautiful. We

need the same for our games. We need

awesome, detailed backgrounds. Jaw-

dropping backdrops!

In this tutorial you will learn how to create

useful backgrounds for you games. This

tutorial will be a basic introduction to raster

images and how they may be used and

manipulated to produce impressive graphics

for your games.

As usual we will need to start by creating a

new empty image to work on. Select

File>New...

Since we usually know the resolution of the

window that our game will run in, we can use

this as the size of our image. Let’s make the

image 800x600. Set the width as 800 and the

height as 600. In the game where this

background will be used, the window will

have an 800X600 resolution.

Now as you stare into the white space you

might wonder what theme you would like to

create for your game. It doesn't really matter

what theme you aiming for, the general

methods and uses of the tools in Photoshop

are the same. There are a number of tools

within Photoshop and a variety of ways to

apply them to create the exact effect you

are desire. We will create a forest type

background, a forest scene in the moon-light

sounds good.

Before you start on the image itself,

brainstorm some ideas. What elements can

you use in the image? Think about what

elements of the background can also be

incorporated into the game's playability

itself. Trees are useful-items can be placed

on them, lush grass is good-small enemies

could emerge from it, a full moon and a

some stars would also provide a good

atmosphere. Now we can start with the

actual design of the background.

The first element we will start with is the sky

that would be at the extreme back of the

image. Choose the gradient tool and select a

dark blue going into a slightly lighter blue.

Then, while the background layer is selected,

left-click and drag the tool from the top to

the bottom of the page. You should have a

gradient on your image as shown to the left.

The next element that we will create is a

tree. Select a shade of brown and use the

pen tool to create a shape resembling the

trunk of a tree.

Make the size of

the tree range

from the bottom

of the page to the

top (these are

very large trees).

Tune the shape

using the convert

point tool to

make your tree

look its best.

TUTORIAL

GAME GRAPHICS DESIGN
Part 4: Backdrops

By Rishal “TheUntouchableOne” Hurbans

Y

This article refers to resources available at the “Contents” section of the Dev.Mag website (www.devmag.org.za).

It is recommended that you visit the site and download these resources.

Once the you are happy with the shape of

the tree, right-click on the tree's layer select

Rasterize Layer. The image is no longer a

vector image, it is a raster image. The tree

needs some texture, we cannot draw each

and every detail on the tree so we will use

one of the filters in Photoshop. Select

Filters>Artistic>Sponge... Set the required

values as follows.

No

te:

Exp

eri

ment and play around with the filters in

Photoshop, they have a host of effects that

are very useful in manipulating raster

images.

Now we can use the burn tool to give the

tree some depth. Select the Burn tool in the

tools palette and apply it to the tree. Use it

to your discretion and create shadows on the

tree. The tree should look similar to the

figure below.

I think the next element should be the front

layer of grass, choose a medium dark green

as the foreground colour and a lighter green

as the background colour. We need to create

a new layer for the first piece of grass.

Select Layer>New>Layer. Now select the

brush tool. In the options menu at the top of

the screen, select the “grass” brush type and

set the size value as 75.

Br

ush

the

gr

ass

acr

oss

the

bot

tom of the page. Start just before the

bottom of the tree and continue to the far

bottom of the page. This would be the most

effective way to make the grass look its best.

This makes the grass look like it’s firmly

planted into the ground.

The background is looking good already but

we need more trees. Instead of going into

the trouble of creating more trees from

scratch, we will use our current tree, right-

click on the tree's layer and select Duplicate

Layer. Move it next to the first

tree. Now we can resize the

second tree and manipulate it to

look slightly different to the

previous tree. We will make the

tree thinner and we will make it

look further away from us. Select

Edit>Transform>Scale to make

the tree thinner and smaller(for

depth distance) then Select

Edit>Transform>Flip Horizontal,

this will make the tree look

distinguishable from our first

tree. Your image should look

similar to the example to the

right.

We need another

piece of grass

between the first

tree and the second

one. Select the

brush tool again, it

should already be

on the grass brush

type. Now, select a

darker green as the

foreground and background colours then

create a new layer. In the layer window,

position the new layer you just created

between the first tree and second tree

layers. Now brush a second piece of grass.

Then repeat the last method for grass behind

the second tree. Choose a darker green than

the previous and brush the grass behind the

second tree. Make sure the new grass layer is

behind the second tree's layer.

The background is coming along quite nicely,

it is starting to look more polished but we

need it to be more interesting. Lets add a big

moon in the background on the horizon.

Select the Ellipse tool with a foreground

colour of white and draw a circle, it should

be rather large as we want the moon to stand

out somewhat. The moon layer must be

behind the last piece of grass.

TUTORIAL

Brush settings and grassy results

The moon needs texture and some glow.

Remember the Blending options we worked

with in tutorial two? We will use these again

now. Select the blending options of the moon

layer and choose outer glow, make the glow

white and increase the size of the glow to

give a brighter effect. We will also choose a

pattern overlay for some texture. Browse

through the patterns in the Blending Options,

you should find one that looks similar to the

surface of the moon. Use the scale slider to

scale the pattern to the size that looks right.

Two trees in a forest seems pretty empty.

We need more trees. Two more will do the

trick but we cant draw new trees, we will

just duplicate one of the trees we have.

Once you have duplicated one of the trees,

resize it and find a suitable spot for it. You

can do this for as many trees as you want.

Some stars in the sky would also be nice.

Select white as the foreground colour , there

should be a brush type in the brush options

that looks similar to a star. Create a new

layer for the stars and go wild with them.

The background looks fairly complete. To add

an awesome effect to the background, I

thought fog. So to create some nice looking

fog/smoke effect we need to create a new

layer. Select white as the foreground colour

then select the pen tool. Draw a sharp edged

shape, similar to the figure here.

Now rasterize the shape by using the method

explained earlier. This doesn't look good

at all at the moment but I can

guarantee you that the final fog will

look excellent. We are going to use the

Photoshop filters once again. The

distort filter will help us a lot. Select

Filters>Distort>Wave... Then set the

values as shown in the image alongside.

Select Edit>Fade Wave... Set the fade

at 50%. Repeat the Distortion and the

Fade a few times until the white shape

looks like fog or smoke. Once you have

successfully completed this, set the

fog layer's opacity to 40%-50%. Position

the fog layer in between the first tree

and second tree layers. The image

should now look similar to the figure

shown.

The final background can be

used effectively in a game now.

You can now go out and create

your own master pieces for your

games. Apply the knowledge

gained here to any idea that

comes to mind, practice a bit

and you will soon be producing

professional looking polished

background for your games.

TUTORIAL

Smurfy says “Hi!”

ooking for a free 3D engine that can do all the latest tricks

when it comes to game development is quite a task, but

finding one that gives you the freedom to add, change or even

recreate its whole core is even harder. Stumbling across Irrlicht3D is

surprising as well as exciting; the engine is fast and flexible, free as

well as open source.

Don’t drop your jaw just yet. Irrlicht sports a wealth of features, a

wealth of format support and a wealth of active and willing

community members thriving on each other and the incredible

backbone, Irrlicht3D. Boasting about features is what Irrlicht is good

at without inspection, but it certainly holds a large number of great

things it can do, and create. The creator and his team are a selection

of incredibly skilled people who dedicate time to the engine to bring

great features across to the end user. Niko, who founded Ambiera,

has created a bunch of tools that utilise the Irrlicht engine to help

with developing games, architectural software and pretty much any

3D application that requires a fast engine for 3D rendering, 3D sound

and even well managed XML tools.

The feature list is quite long, but here are a few notable features.

 · Cross platform, Cross language

 · Powerful and fast 3D rendering pipeline

 · Built in material library with vertex and pixel shader support

 · Skeletal character animation and morphing control

 · Built in special effects, particle system and scene optimisation

 · Complete built in GUI

 · PSD, JPG, TGA, BMP, PNG, PCX native texture support

 · 3DS, B3D, OBJ, CSM, XML, DAE, DMF, OCT, IRR, IRRMESH, X, MS3D,

MY3D, MESH, LMTS, BSP, MD2, STL mesh format support

 · More at http://irrlicht.sourceforge.net/features.html

Above all the time that could be spent on the features of the engine,

this series is rather aimed at using the engine to create games for

free, and to create 3D applications with overwhelming ease. This first

part is an introduction to the very basics behind using Irrlicht, and

what it takes to use the engine for your game or application.

Weigh up your options before you start using Irrlicht. Don’t ask on

forums which engine to use for your first 3D game. Don’t ask which is

the best free engine available, I would even say that you should

rather try each engine before even registering on a forum. Try them

because each one is unique and each one has strengths and

weaknesses. View each engine objectively and weigh up what you

want from the engine, whether you can add or remove features and

whether you can even make the project you are embarking on. A few

questions to consider when choosing an engine can include the

following:

Is the engine capable of what I need, if not am I able to add what is

missing?

Is the engine too bloated for my miniature game?

Is the engine too complicated for me and my team to complete a

project?

If the Irrlicht engine is one you could see yourself using, and you are

confident it can help you learn and create a product you hoped you

for, this series is aimed at you. If you are not new to game

development but have

never embarked on a 3D

project before and like

how Irrlicht works, this

series is also aimed at

you. If you are just

interested in how to

create simple games

with the Irrlicht engine,

this is also for you.

TUTORIAL

IRRLICHT
Introduction to Irrlicht

by Sven “FuzzYspoON” Bergstrom

L

The other important ones of course include the video driver, as well

as the scene manager, GUI manager and the GPU programming

services. All of these interfaces are available through the

IrrlichtDevice and each one manages its respective areas well. For

example, you can use the scene manager to load a mesh, add a

button in the window with the GUI manager and handle the events

with the event receiver, all within a few lines of code.

Let’s look at the basic outline of a standard Irrlicht program.

CreateDeviceEx(deviceParamaters) //hand the device the

parameters for the device

LoadScene(sceneFileName) // Loads a scene from irrEdit

into the scene manager

AddCameraSceneNodeFPS() //Add a built in first person

camera that handles keys

While (deviceIsRunning)

Draw all scene related stuff

Draw all GUI related stuff

End while

closeDevice

This is how easy it is to create a full 3D scene from an IRR file which is

created by irrEdit, or saved by Irrlicht to a file. The built in camera

class is a simple key controlled FPS style camera. There is also a

simple camera and a Maya style camera available. Of course, you can

make any kind of camera from a simple camera too.

This introduction is only the

beginning of what will be a series

that will show you how to create

games using this easily-learned

free tool. Look out for the next

part in the series, a simple 2D

game complete with multiple

language implementations. In

the mean time, head on

over to http://

irrlicht.sourceforge.net

and download the latest

SDK, or get connected to the SVN server for a more up-to-date

version. There are plenty tutorials in the wiki and included in the

download to get you started.

This draws the line in part one of this series, keep watching Dev.Mag

for more Irrlicht tutorials, and start making full 3D games sooner than

you thought.

TUTORIAL

HOW TO USE PERLIN NOISE
Your game textures will never be the same again ...

TUTORIAL

29DEV.MAG ISSUE 20

by Herman Tulleken

Perlin noise is the foundation of many procedural texture and

modelling algorithms. It can be used to create marble, wood,

clouds, fire, and height maps for terrain. It is also very useful

for tiling grids to simulate organic regions, and blending textures for

interesting transitions. In this article I will explain how to implement

Perlin noise, and how you can use it in your games.

1.Implementation

Written in its concise mathematical form the Perlin noise generation

seems daunting, but it is actually easy to implement. There are two

steps:

1.Generate a number of arrays containing “smooth” noise. Each array

is called an octave, and the smoothness is different for each octave.

(See the first 7 images in Figure 1 below).

2.Blend these together. The result is the last image in Figure 1.

That’s all there is to it! Now let’s look at the code necessary to work

this out.

a) Generating Smooth Noise

First, you need to create an array with random values between 0 and

1. This array must be the same size as the array of Perlin noise you

need.

generateUniformNoise()

{

 baseNoise[][]; //an array for our uniform noise

 for(i = 0; i < width; i++)

 for(j = 0; j < height; j++)

 //random float between 0 and 1

 baseNoise[i][j] = random();

 return baseNoise;

}

For creating the kth octave, sample the noise array at every point

(i*2^k, j*2^k), for all i, j, and interpolate the other points linearly.

The value 2^k is called the wave length of that octave, and the value

1/2^k is called the frequency.

wave length = 64
frequency = 0.015625

wave length = 32
frequency = 0.03125

wave length = 16
frequency = 0.0625

wave length = 8
frequency = 0.125

wave length = 4
frequency = 0.25

wave length = 2
frequency = 0.5

wave length = 1
frequency = 1

Perlin noise

FIGURE 1

TUTORIAL

30DEV.MAG ISSUE 20

The following pseudo C snippet shows how the kth octave is gener-

ated:

generateSmoothNoise(baseNoise, k)

{

 samplePeriod = 1 << k; // calculates 2 ^ k

 sampleFrequency = 1.0f / samplePeriod;

 for(i = 0; i < width; i++)

 {

 //calculate the horizontal sampling indices

 sample_i0 = (i / samplePeriod) * samplePeriod;

 sample_i1 = sample_i0 % width; //wrap around

 horizontal_blend = (i – sample_i0) * sampleFrequency;

 for(j = 0; j < height; j++)

 {

 //calculate the vertical sampling indices

 sample_j0 = (j / samplePeriod) * samplePeriod;

 sample_j1 = (sample_j0 + 1) % height; //wrap around

 vertical_blend = (j – sample_j0) * sampleFrequency;

 //blend the top two corners

 top = interpolate(baseNoise[sample_i0][sample_j0],

 baseNoise[sample_i1][sample_j1], horizontal_blend);

 //blend the bottom two corners

 bottom = interpolate(baseNoise[sample_i0][sample_j1],

 baseNoise[sample_i1][sample_j1], horizontal_blend);

 //final blend

 smooth[i][j] =

 interpolate(top, bottom, vertical_blend);

 }

 }

 return smooth;

}

The following function returns a linear interpolation between two

values. Essentially, the closer alpha is to 0, the closer the resulting

value will be to x0; the closer alpha is to 1, the closer the resulting

value will be to x1.

interpolate(x0, x1, alpha) //alpha lies between 0 and 1

{

 return (1 – alpha) * x0 + alpha * x1;

}

There are a variety of interpolation schemes; the best one to use

depends on your application.

See http://local.wasp.uwa.edu.au/~pbourke/other/interpolation/ for

some common interpolation schemes.

b) Blending the Arrays

To make the final array, you add weighted values of all the smooth

noise arrays together. The weight used for each octave is called the

amplitude. Any values can be used for the amplitudes, with differ-

ent effects. A good starting point is to use a weight of 0.5 for the first

octave, 0.25 for the next octave, and so on, multiplying the amplitude

with 0.5 in each step. In this scheme, the value 0.5 is called the per-

sistence of the noise. After you have added all the noise values, you

should normalise it by dividing it by the sum of all the amplitudes, so

that all noise values lie between 0 and 1.

generatePerlin(baseNoise, octaveCount)

{

 smooth[]; //an array of 2D arrays containing

 persistance = 0.5f;

 //generate smooth noise

 for(i = 0; i < octaveCount; i++)

 smooth[i] = generateSmoothNoise(baseNoise, i);

 perlinNoise[][]; //an array of floats initialised to 0

 amplitude = 1.0f;

 totalAmplitude = 0.0f;

 //blend noise together

 for(k = 0; k < octaveCount; k++)

 {

 amplitude *= persistance;

 totalAmplitude += amplitude;

 for(i = 0; i < width; i++)

 for(j = 0; j < height; j++)

 perlinNoise[i][j] += smooth[k][i][j] * weight;

 }

 //normalisation

 for(k = 0; k < octaveCount; k++)

 {

 perlinNoise[i][j] /= totalAmplitude;

 }

 return perlinNoise;

}

In practise smooth noise arrays are not actually created; rather, the

noise is calculated and added to the final array on the fly. How this is

done is not shown here - check out the link at the end of the article

for a link to example code.

Perlin noise can sometimes look diluted. For many applications this

is fine. However, sometimes you may want something a bit more dra-

matic. This can easily be achieved in one of the following ways:

— Increase the contrast as a post-processing step using image

editing software.

TUTORIAL

31DEV.MAG ISSUE 20

— Use a higher persistence (0.7 is good for 6 octaves), and skip

the normalisation step. Just make sure to clamp your final values

to 1.

The first method is better when you want tight visual control. The

second method is more convenient as it is part of the creation process

and can hence be better automated.

2.Applications

a) Textures

One of the simplest uses of Perlin noise is to map it with a gradient.

This can be used for attractive maps or cheesy fire effects (which you

can animate — explained in another section) as shown in Figure 2. You

can do this with your image editor, or programmatically. For the latter

approach, you need a gradient function that returns a colour given a

number between 0 and 1. This function is then called for every ele-

ment in you Perlin noise array to obtain a colour, which you can store

in a separate array, from which an image can be created.

Here is a code snippet showing how it works:

getColor(x) //x is a number between 0 and 1

{

 //Replace this with your own code

 //This is a gradient from white to blue

 return Color(255 * (1 - x), 255 * (1 - x), 255);

}

mapGradient(perlinNoise[][])

{

 image[][]; //an array of colours

 for(i = 0; i < width; i++)

 for(j = 0; j < height; j++)

 image = getColor(perlinNoise[i][j]);

}

Perlin noise can be used to blend between two textures, as shown

in Figure 3. You should use Perlin noise with very high contrast to

prevent textures from looking fuzzy. The following code snippet shows

how to blend two images using Perlin noise.

blend(image1[][], image2[][]; perlinNoise[][])

{

 image[][]; //an array of colours for the new image

 for(i = 0; i < width; i++)

 for(j = 0; j < height; j++)

 image[i][j] = interpolate(image1[i][j], image2[i][j],

 perlinNoise[i][j]);

 return image;

}

Of course, you would not create textures this way, but it can be used

for interesting real-time transitions. Figure 4 shows very cheap plant

growth using only three textures and appropriate blending.

FIGURE 2

Perlin noise mapped to a grey-

scale gradient, discrete colours

and a “fire” gradient.

Image 1

Perlin Noise

Image 2

Blend between

images using

Perlin Noise

FIGURE 3

FIGURE 4.1

Real-time transitions using Perlin blending

TUTORIAL

32DEV.MAG ISSUE 20

The following function blends the images as shown by calculating a

new blend factor alpha, depending on the value t. The value t runs

from 0 to 1, and is calculated from the elapsed game time.

blend(image1[][], image2[][], perlinNoise[][], t)

{

 image[][];

 for(i = 0; i < whidth; i++)

 for(j = 0; j < height; j++)

 {

 //calculate new blend factor alpha

 if (t < 0.5)

 //blend PerlinNoise with black

 alpha = perlinNoise[i][j]*t/0.5;

 else

 //blend PerlinNoise with white

 alpha = perlinNoise[i][j]*(1–t)/0.5 + (t–0.5)/0.5

 //blend images using alpha

 image[i][j] =

 interpolate(image1[i][j], image2[i][j], alpha);

 }

 return image;

}

b) Landscape Generation

When Perlin noise is interpreted as a height map, an interesting ter-

rain can be created (Figure 5).

Softimage Mod Tool is a free 3D modelling and animation application

especially suited for games. One of it’s features is a built-in landscape

generator that can use Perlin noise, among several others, to generate

landscape meshes (http://www.softimage.com/products/modtool/).

c) Object Placement

Perlin noise can also be used to place objects on a grid more naturally

than can be done with uniform random placement. To do this, follow

these steps:

(1) Define k sets of similar-looking objects.

(2) Create Perlin noise large enough to cover your grid. Each pixel of

noise should correspond with one cell in the grid.

(3)For every cell in the grid, find the corresponding pixel of noise, and

use the following formula to decide from which set you should choose

an object: i = floor (n / (1.0 / k)). You choose objects from set S[i],

usually randomly.

You can use this method even if you do not use a grid to place

objects. Just define a grid so that there is roughly, on average, one

object per cell. For every object to be placed, first determine the cell

it corresponds to, and then proceed as above. If this requires a too

large grid, you can use a smaller grid, so that there is more than one

object per cell. Use linear interpolation to obtain a Perlin value for an

object. You won’t get the Perlin pattern inside a grid cell – but it will

hide the fact that there is a grid.

FIGURE 4.2

Effective blend texture

t = 0 t = 0.2

t = 0.4 t = 0.6

t = 0.8 t = 1

Height map generated from

Perlin noise.

The mesh generated from the

height map.

The rendered mesh.

FIGURE 5

TUTORIAL

33DEV.MAG ISSUE 20

For you to see the characteristic Perlin pattern, the world has to be

quite large (Figure 6). However, you can benefit from Perlin place-

ment even for small worlds. In a small world, there will be much more

variation between successively generated worlds than there would be

had they been generated by another method, as the images in Figure

7 illustrate.

Sometimes you can construct your sets so that a certain property

maps to the set number in an obvious way. For example, for sets of

buildings, it would make sense to let the shortest buildings be in set

0, and the tallest buildings in the last set. Arranging your objects in

this way ensures that very short buildings are never next to very tall

buildings. This can enhance the illusion of “spatial progression”.

Sometimes there is no relationship between the set number and any

property, and you benefit nothing from one set of objects always be-

ing close to objects in the same or adjacent sets. In this case, you can

increase the amount of variety between different worlds by permuting

the set indices, i.e., every time the algorithm runs, i = 0 will select

objects from a different set. This can easily be accomplished by

creating a shuffled array m containing the integers 0..k-1, and then

choosing objects from the set S[m[i]].

It is very noticeable when two adjacent objects are the same, and

this happens much more frequently with Perlin placement than with

uniform random placement. There are three ways in which you can

reduce or eliminate this effect:

1.Create more objects. To get the same number of adjacent objects

in a grid as you would get with uniform random placement, you would

FIGURE 6

In large worlds, the Perlin patterns can easily be seen. Here three sets of objects

have been used: city, suburban, and industrial. (Art: Chris Cunnington)

FIGURE 7

A big variety of small worlds. (Art: Chris Cunnington)

DB SAYS ...

If this isn’t enough to get you going with Perlin Noise, here’s a few other sources which may help you understand the topic better!

Gustavson, S. Simplex noise demystified. staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf

Explains classic Perlin noise, and the improved simplex noise. The treatment is technical, but comes with very readable source code.

Atkins, M.; Barad H.; Gerlitz, O.; Goehring, D. Real-Time Procedural Texturing Techniques Using MMX.

http://www.gamasutra.com/view/feature/3098/a_realtime_procedural_universe_.php

More texture generating techniques using Perlin noise.

Elias, H. Perlin Noise. http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

A very good introduction to Perlin noise.

Perlin, K. Making Noise. http://www.noisemachine.com/talk1/

The creator of Perlin noise’s website.

Zucker, M. The Perlin noise math FAQ.

http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html

A deeper look into the mathematics of Perlin noise.

TUTORIAL

34DEV.MAG ISSUE 20

need as many objects in a set as you would need in the entire collec-

tion for uniform random placement! If you have k sets, you will need

to create k times the amount of art!

2. Another nifty trick is to further subdivide each set into “white” and

“black” objects. The grid is then treated as a black and white checker

board, and objects are placed so that “white” objects are always on

“white” squares, and “black” objects always on “black” squares. This

trick can be expanded to more than two colours, and non-periodic

grid patterns, but is the subject of another article.

3. In some games, you can reduce the jarring effect by introducing

small random transformations (rotation, scaling, mirroring, and for

certain types of objects, shearing). This is especially effective for

plants and other organic objects. You can also introduce small random

colour variations, although you should take care not to destroy the

overall colour and lighting of the game.

For this application, you might find that the first and last sets are

under-represented. This has to do with the way Perlin noise generates

more greys near the centre than it generates whites and blacks. The

easiest way to rectify this problem, is to duplicate the under-repre-

sented sets.

The more sets you have, the smaller contiguous regions will be, and

the more interesting your grid will be. If you have a small number

of sets, you might wish to duplicate the sets for an more interesting

world. Make sure that duplicate sets are not next to each other (for

example, S[0] and S[1] must contain different elements) – otherwise

this step will have no effect.

Be careful when tweaking a world generation parameter: remember

that Perlin worlds look quite different from each other with the same

parameter settings, something that can easily throw off any “trends”.

Always run the algorithm a few times with the same settings to make

sure what you perceive as a general occurrence is not an isolated

anomaly.

d) Perlin Noise Tiles

Perlin noise can be made tileable by using a power of 2 for the array

dimensions (128 × 128, for example).

You can also create a set of tiles by using a set of base noise arrays

with the same first row and first column. All tiles in the set will tile

smoothly with each other.

e) Perlin Noise Animation

The algorithm for generating Perlin noise is easily modified to make

animation sequences. The basic idea is to generate a block of 3D Per-

lin noise, cut it in slices, and use each slice as an image of the anima-

tion sequence. If you use a power of two for the time dimension, the

sequence will loop smoothly as well.

This sequence can be used for object placement to simulate transi-

tions that will add life to your game.

The 3D version of the algorithm is quite slow – on my machine a

lazy-man’s implementation takes about thirty minutes to produce 256

frames of a 256 × 256 image sequence.

3. Download

You can download implementations for these algorithms from

http://www.luma.co.za/labs/2008/01/20/perlin-noise/

There are implementations in Java, Python and GML (GameMaker).

PUMP IT!
Sound-based games and the developers who love them

DESIGN

36DEV.MAG ISSUE 20

by Rodain “Nandrew” Joubert

A common habit of most hobbyist game

developers is to fuss about with the

gameplay and graphics in their work,

getting those things all nicely done up before

looking for an arbitrary sound package on the

Internet and slotting in sound effects which

sound good enough to fit in with the game

that’s been cranked out.

While this may not be all that bad (and in

some cases should suit the developer’s needs

just fine), there’s definitely a lot more work

that can be done with sound in most people’s

games ... moreover, there’s a lot more poten-

tial that can be squeezed out of the sound

aspect if the game’s designer gets sufficiently

creative. Audio doesn’t have to be a purely

aesthetic aspect of one’s game. It can serve

as a very real and very functional aspect to

the point where it becomes an integral part

of the gaming experience.

Today, IGF Grand Prize nominee Audiosurf is

one of the prime examples of what sound can

do for your gameplay. The game’s developer,

Dylan Fitterer, has spent several years work-

ing on his creation using a mix of Visual C++

and Quest3D, and recent beta releases have

shown players a very promising title which

proves to be both fun and original. “The abil-

ity to use your own music is the main draw

of the game, and I really think that’s what

players love about it,” Fitterer says. “It’s

like a big sandbox – you can create whatever

experience you want to create.”

Sound and rhythm games haven’t always

been as sophisticated as they are nowadays,

but from their earliest incarnations they’ve

been a steady and accessible source of fun

for many gamers. The genre itself is compar-

atively new – most well-known audio games

are less than a decade old, while the main-

stream gaming industry has been around for

at least 30 years. The most likely explanation

for this is the limitation of technology: bust-

ing a move to the beeps and blurps of an old

NES system, after all, isn’t what most people

have in mind when they want something to

get their groove on. Nowadays, in the era of

massive MP3 collections, music visualisers

and an ever-expanding gamer base, it’s not

hard to see how music and rhythm are having

a much more profound effect.

Audio and rhythm – the difference?

One of the first things to get out of the way is

that a game based on sound is not necessarily

the same as a game based on rhythm. Some

games may opt to alter the game environ-

ment for the player – for example, generating

tracks in Audiosurf based on the background

music – without requiring an actual sense

of rhythm on the player’s part. Games such

as Rez and Lumines are other examples of

sound-based games where the player doesn’t

necessarily have to be skilled in rhythm

games to enjoy.

Rhythm games tend to require careful,

regular timing from a player, which may not

be the case for all titles in which music is a

dominating factor. DDR and Guitar Hero are

easily branded as rhythm games. Karaoke

titles are not.

Rhythm games are by far the most common

type of sound-based games due to their

familiarity and ease of use. They’re a handy

option for interested developers to take if a

sufficiently novel or addictive premise can be

“It took years of tuning to get the game to be fun across all
kinds of different types of songs. That was a lot of hard work
but it’s really paid off because I’m so happy with where the
game is today. It’s great to hear people having fun across their
entire musical collection.”

— Dylan Fitterer on the challenges of making Audiosurf

DESIGN

37DEV.MAG ISSUE 20

found, and inspiration for these sort of titles

can be found everywhere. Indie equiva-

lents for a lot of mainstream rhythm games

already exist: take, for example, Stepmania

(a popular DDR clone) and Frets on Fire (an

indie incarnation of Guitar Hero).

However, although non-rhythm sound games

are less common, the fact that the genre is

considerably undeveloped when compared

to the heavily saturated realms of FPS titles

and RPGs means that new developers have

a lot of opportunities to explore brand new

territories.

Not a walk in the park

Sound-based gameplay may be a fertile land

of opportunity, but that doesn’t mean that

things are going to be as easy as throwing out

a random audio title and raking in an inevi-

table mountain of praise. A lot of work goes

into these sort of titles, not least because of

all the associated idiosyncrasies. The poten-

tial of audio games may be tempting for the

avid developer, but actually finding a game

concept that works and can successfully be

molded into something entertaining is no

small challenge.

Audiosurf’s Dylan Fitterer explains how he

got his development experience a long time

before working on his flagship title by devel-

oping a free game every week for several

months. This forced him to “zero in

on the core of fun” for every game

he made – each game’s success or

failure hinged exclusively on whether

or not he made it entertaining within

the first seven days of development.

Fitterer also feels that inspiration

plays an important role in the game

development process,

and he’ll

quite possibly

be doing a

different type of

game altogether once the

Audiosurf project comes to a close.

“I love playing and designing tons of different

kinds of games, so who knows?”

Simply forcing out a sound game because it’s

the “cool thing to do” isn’t going to work.

Careful thought needs to be applied to a

project involving any unorthodox elements,

and a great deal of rapid prototyping is a

better idea than simply jumping head-first

into a major project.

What to do

So, your heart is set on developing something

with audio-based gameplay. What steps can

you take to ensure that it turns out as fun as

possible?

Practice, practice, practice

Prototyping is your friend. Focusing on

small projects also helps. In fact, as a good

developer you should already be trying to

get as many experimental games under your

belt as possible. Seeing how people react to

these sort of projects is key to establishing

what’s fun, what your capabilities are and

what direction you should be taking. This is

DESIGN

38DEV.MAG ISSUE 20

particularly valuable in areas like sound and

rhythm.

Learn from others

Fitterer talks about the games that inspired

Audiosurf. “Rez is a big inspiration, and I also

loved a 3D visualizer Wild Tangent put out

several years ago where a ship flew above

beautiful terrain that was shaped by the

music.” He based the creation of his game

on these titles, and Audiosurf is frequently

compared to many other sound games as

well. Esentially, if a game like Lumines is

released and enjoys massive popularity,

chances are that it’s doing something right.

Part of any developer’s design process should

involve analysing these games properly and

isolating the fun factor. Better still, have a

look at flawed games and take note of the

mistakes made. Errors and muck-ups are the

best learning opportunities, after all.

Understand sound

Most developers know well enough how to

throw sound into their games – in most tools,

it’s simplified to a sound_play() option or

something similar. However, the challenge

increases monumentally when you want

your sound to do a little more than just play

passively. Audiosurf, for example, requires a

full analysis of the sound provided to make

sure that the racing track has bumps, twists

and cars in all the right places. Go onto the

Internet and do some research on digital au-

dio – it’ll grant you some extra flexibility and

help you deal with errors when they crop up.

Test it!

“It’s great to hear people being so passionate

about Audiosurf and wanting more!” says Fit-

terer about his first public beta. In his case,

the amount of feedback and suggestions that

he received in one weekend was phenomenal

compared to that which he could expect

when keeping the game largely private. He

believes that putting other people’s ideas

into the mix was definitely a positive move.

Perhaps you don’t want to go as far as an-

“Remember how personal music is to everyone ... classical, rap, heavy metal, ambient, or
whatever ... allow for a broad range of experiences with your game that allows players to
feel a full spectrum of emotions.”

— Dylan Fitterer on good development practice

The concept is simple: allow players to choose a song from their

personal music collection, then generate a 3D racing course which

reflects the tempo and style of the chosen song. And it just goes up

from there.

After playing Audiosurf, simply listening to your music will no longer

suffice. Not after you’ve found yourself in control of a colourful

and zippy little futuristic racing craft, hurtling down a beautifully-

crafted race track and which twists, bumps and turns in tune with

your favourite piece of music. The layout of the race course itself

reflects the overall tempo of the song chosen, with upward climbs

for calmer moments, plunging drops for the intense areas and some

corkscrews thrown in for good measure. On a smaller scale, the

track will pulse with the beat of the music, allowing you to visually

experience every bass kick, drum snare or synthesiser note. Obvi-

ously no music visualisation game would be worth its salt without

a liberal amount of seizure-inducing flashing colours, and Audiosurf

is more than happy to oblige. The track changes colour as the song

progresses and a large amount of psychedelic polygons are hurled at

the screen throughout.

If you thought that was more than enough visualisation for one

person, then think again. The game challenges the player to collect

coloured blocks, referred to as ‘cars’, which also correspond to the

music; softer colours for the slow moments and vivid colours for

the fast-paced areas. The player has a 7 x 3 grid in front of their

vehicle in which they scoop up these blocks. Matching three or

more colours together in any combination will generate points, the

more colours together the better. Filling the grid beyond capacity

results in a loss of points or the inability to gather blocks for a few

seconds. All of this isn’t as easy as it sounds when you are plunging

down a virtual cliff on an undulating track, but it sure is fun. This

leads to the game element that will probably keep you coming back

for more – the ability to upload your scores to the internet. Through

the in-game menu system you can search for your favourite songs

and see who else in the world has logged high scores. You can also

add friends who are playing, compare scores and then try to best

one another. Audiosurf will even send you an e-mail taunt to notify

you that you have been knocked from the top score position of your

favourite song. If all that is too much competition for the faint of

heart, the game has a relaxed cruising mode in which you can drift

down the visualisation highway and just enjoy the scenery.

Audiosurf does a terrific job of keeping things interesting by provid-

ing three difficulty modes, each with its own distinct visualisation

environment, and an array of different vehicles each with their own

speciality and tricks. The game supports two players with two rac-

ing craft on the screen, one controlled by the mouse and the other

by keyboard. This is great if you have a nagging friend at your house

or simply wish to go cross-eyed trying to manoeuvre two vehicles by

yourself.

Overall the game is immensely fun and extremely addictive. Fans of

all musical genres, from the heaviest metal to the most ear-pound-

ing trance and everything in between, will find themselves at home

with the game as the tracks generated always provide an accurate

representation of the style. It is almost futile to describe the game

with words as it is a visual extravaganza that must be experienced

for oneself.

Audiosurf is due to go retail in February. Keep up to date by visiting

http://www.audio-surf.com/

FIRST IMPRESSIONS:

AUDIOSURF
BETA

by James “NightTimeHornets” Etherington-Smith

DESIGN

39DEV.MAG ISSUE 20

nouncing a public testing session, but it’s a

good idea to at least get a regular, reliable

group of testers at your beck and call. Re-

leasing test versions and requesting feedback

from communities is not only a great way to

see how actual players react to your game,

but people have an incredible knack for find-

ing errors that never occur to the developer.

In the case of a game that you want to

market, open testing is also a great excuse to

give your project more attention.

To wrap it up

Audio-based gameplay is an exciting and

reasonably fresh approach to game develop-

ment that is starting to receive an increased

amount of attention from both players and

indie development groups. The IGF, for exam-

ple, has an entire awards category dedicated

to excellence in audio, and if you want to

see some other games that do credit to the

genre, be sure to have a look at finalists such

as Synaesthete and Fret Nice for additional

inspiration.

These sort of games require work like any

other, but the reward potential is great. Just

remember that novelty, expression and intui-

tion all have their place in a sound-based

game, and that if you want players to have

fun, these games have the potential to con-

nect them to the experience in a way that no

others can.

PROJECT SCR
A work in progress

DESIGN

40DEV.MAG ISSUE 20

by Sven “FuzzYspoON” Bergstrom

Project: Shopping Cart Revenge (known as

SCR for short) is a destruction racing game

where the objective is to crash into other

players. Originally just a minigame, the

creators have decided to expand its potential

and are now working on a fully-blown title,

with an arena-style system for multiplayer

and several challenge modes to be added.

We won’t be seeing any releases just yet, but

here’s a project story from the lead devel-

oper to tide you over for the meantime ...

This project was an interesting find in

the shadows of my mind – I always

look for something that either doesn’t

make sense, or has been done before but

not in the way my mind explains it. I have

always loved games that express an interest-

ing way to destroy something, either subtly

or directly. With the likes of demolition derby

and all other crash racers, I wanted a game

where you can simply drive your heart out.

Being my first fully 3D game, I’ve decided

to equip SCR with all the latest tricks in

graphics, optimized multiplayer, 3D sound

and all the interesting ideas I can pack into a

feasible deadline.

Project Description

A crash racer can be a lot of fun, but what

would make it that much more fun than your

average crash game? More violence? More

blood? Or an interesting twist that makes it

amusing rather than savage? I found out that

it could be a unique vehicle that would both

be ridiculous and impossible, or fast and

out of control. The fast and crazy has been

done in a few games, and I spotted a unique

vehicle in the form of a shopping trolley.

This, in my mind, was an instant winner.

Being a great premise for unique gameplay

and interesting single player missions sparked

something in the brain part of my head. Im-

agine riding with your friends in a multiplayer

game of shopping trolley mayhem. Throwing

groceries at unsuspecting players and flying

into walls as you hit into players, knocking

others over with your face at high speeds all

constitute as ridiculously amusing.

Project Details

The team started out as me and my C++

compiler. I started planning the game design

and plotting my code structures in a text

file, as well as testing my texture baking and

lighting ideas. I noticed some great results so

I looked at the next option, how would I have

approached map loading and the physics. I

started testing with a Newton wrapper that

worked easily for what I wanted to test, and

ran efficiently on slower machines. I started

testing the game with my engine of choice,

Irrlicht3D gives me an easy platform to test

graphics and game play. So, I started making

a prototype in a test map, giving me a handle

on testing the game play and how the trolley

would “drive”, how the trolley would react

in the map, and how the graphics would

perform at high stress.

The first trolley I tested was a hefty 68 000

polygons, which would surely break the

record of “most ridiculous poly count in a

game”, but luckily I knew the free model I

had downloaded was not going to be in my

final game. I quickly optimised the trolley to

12 000 polygons, which would do adequately

for tests in the engine I was attempting to

create. I spawned a couple of them in my

test engine, a mere 30 – 40 of them. This

was purely testing the engine to see what it

could handle, and it gracefully dropped the

DESIGN

41DEV.MAG ISSUE 20

frame rate by 10, running with full screen,

vertical sync and a full screen bloom shader

with a 1024x1024 render-to-texture target,

which is larger than the screen resolution I

was testing. I was actually surprised that it

ran smoothly – though it definitely was on a

“good” computer.

Above the stress tests, I tested the 12 000

poly trolley with all these high settings

enabled and got smooth results on a horrid

PC as well. I now faced my next problem,

multiplayer.

Project Team

I decided a team wouldn’t be a bad thing,

though I have never really worked on a game

with a team of more than two, I decided

to see who I could recruit that would prove

reliable and helpful, while helping me learn

and not giving me code but giving me knowl-

edge. I started talking to a great guy named

Varmint, who is now one of the Irrlicht team

on the Mac side. Turns out he knows way

too much about networking, which wasn’t a

bad thing at all – in fact, it was just what I

needed. As he took time out of his day to ex-

plain a lot of useful and great techniques, we

eventually decided that he would be helping

with the networking and the AI.

The artist, on the other hand, wasn’t as co-

incidentally recruited. I have been talking to

ReVerthex quite a while back, when we were

frequenting ultimategfx.co.za together. We

have had some talks and I have used a few of

his great models as tests in my endeavour to

find interesting texture mapping techniques.

As we discussed SCR, he decided to work on

a map that I would include in the first demo

as a test map, leaving me more time to

tweak the code side of things while he made

the map. From then we decided to make a

certain number of maps, and he would do a

certain amount and I would work on another

bunch. This is why he is now a team member,

as he continues to make cool maps for the

game, and has brought my pitiful trolley into

a 3000 polygon made-from-scratch wonder.

The newest member is a friend from the

Irrlicht scene, nicknamed Blindside. Amongst

forum members there are always guys that

stand out with quality contributions, this guy

DB SAYS ...

Interested in this project? Take a look at the following sites for updates:

http://irrlicht.sourceforge.net/phpBB2/viewtopic.php?t=25288

http://www.owned.co.za/fail

The team members can also be found stomping about on the

Internet if you fancy hounding any of them:

http://ReVerthex.deviantart.com

http://newclearfuzzy.deviantart.com

http://thermal.freehostia.com/wordpress/

http://www.krabbit.com

DESIGN

42DEV.MAG ISSUE 20

being one of the really great submitters to

the community. Having stood out for effects

wrappers, shadowing techniques and even

implanting great-looking graphics into not-

so-good-looking maps, he certainly raised my

interest as a developer. As we discussed the

techniques he employs for soft shadowing in

Irrlicht, we decided it would be beneficial

to have him on the team for effects and eye

candy. My tweaked bloom shader would fit his

effects for realistic water, and other great

effects we planned to employ.

Project Pitfalls

The few things that have tripped me up were

so simple in my mind, but ended up costing

hours of wondering and waiting. Some of

these things were unexplainable, but with

some insight from the more professional

amongst the beginners, I managed to find

code that helped me out. Such pitfalls that

took away time of mine were the 3rd person

camera. Surprisingly enough, my math did

not step up when I couldn’t figure out the

quaternion and Euler problems I was facing,

but a friend on IRC managed to scratch the

code into a pastebin that helped me fix the

math problems.

Other challenges included large texture files,

my test map was really small and square but I

was facing a 65 MB file size on the final map.

This, of course, was one of the first things I

looked into, having a bit of experience with

3D and textures. Lowering the textures to

a mere 3 MB with the same level of quality

didn’t take much, but will definitely help

in the development of a fast, good-looking

game.

Project Breakdown

This project is purely experimental and

for fun. It is not the next game to hit the

shelves, it is merely a project to learn from.

Creating a game that people can enjoy and

can learn from is part of my motivation for

ProjectSCR. The open source policy will

not change on this project, and all team

members are in agreement that more people

can learn from it than what we could make

out of getting recognition for the game.

We are making this game for the people, as

this serves as an example to all the people

who feel elitist out there. Somewhere along

the line, somebody helped you get some-

where. Let’s do something that is not about

ourselves for once – it’s not like we won’t get

the credit for it.

Ultimate Quest
The ultimate postmortem

DESIGN

43DEV.MAG ISSUE 20

by Claudio “Chippit” de Sa

Ultimate Quest is a tongue-in-cheek text

adventure with a retro take on graphics and

a charming sense of humour. It’s also really

strange. And you can lick sheep. We managed

to rope in one of the development duo to

talk some more about it. Brace yourselves.

It started in IRC. A normal day, though

discussions of the recent and crazier than

usual Game.Dev competition rules were

abound. Everyone was nursing ways to exploit

the ‘text-only’ limitation for the competi-

tion. As is the norm, of course, no-one active

in that discussion actually made their ideas a

reality. At least, not until Tarryn “Azimuth”

van der Byl joined the conversation, caught a

whiff of potential for a text-only adventure,

and plainly declared that we ‘make it!’

Ultimate Quest was born in that moment,

and, as it turned out, the only collaborative

project I’d ever been involved in that was

actually completed. The very conjunctive

nature of the project was the largest contrib-

uting factor to the completion of the game.

Since I didn’t have to worry about where

the visuals of the game would come from, I

was able to devote time to getting the game

to work as it should as well as creating the

content that was expected from a game of

this kind. Azimuth contributed a significant

amount of both artistic and literary skill to

the project; a large majority of the dialogue,

as well as every graphical element in the

game is attributed entirely to her talent. The

fact that I had feedback in more stages of

development than I would normally have had

– as well as input into decisions that I would

have made myself – was instrumental to the

game’s development and progress.

Text Parser

After the initial sharing of ideas, basic

themes and defining features, I set about

concocting a small text-parser demo to see

whether I could create one which had the

functionality that would be integral for the

game. The parser I created was quick and

simple, yet fairly effective. It would simply

search the input string for known verbs (or

their varied synonyms; the final game had

many of those, for both verbs and objects),

and then find the object onto which the verb

will be applied. It then passed the verb over

to the object for processing, and the object

itself would handle any action if such a

response existed for the specific object/verb

pair. This text-parser hardly changed its im-

plementation since incorporating it into the

game, barring verbs that were added in as

time went by. Unfortunately, this implemen-

tation had a particular limitation that I was

only aware of near the end of development:

the parser only searched for the first object

it could find, and, in fact, disregarded word

order or additional words in the phrase. As

such, it could not process commands involv-

ing two objects, such as ‘Use scissors on

sheep’. I worked around this issue by having

commands that were reliant on a secondary

object take the nearest object in game-space

as a parameter, which masked the limitation

quite effectively since it was natural to walk

towards whatever you want to interact with.

To do this, as well as some other actions in

the game, I had to forge a somewhat hasty

and sloppy connection between the text

parser and the game’s physical space, since,

initially, the text-parser had no knowledge or

link to the graphical elements of the game

and could run entirely independently of it. In

the final version of the game, the text-parser

could find the object that was closest to the

avatar, as well as have access to certain spe-

cific objects in the scene as necessary.

DESIGN

44DEV.MAG ISSUE 20

However, despite a few sloppy additions to

the parser system near the end of develop-

ment, it still worked to the degree that it

was originally intended, and, since it is the

only means of interacting with the game

world, I felt that it effectively served its

purpose.

Graphics

One of the first things we discussed was how

we would actually represent the game world.

Simple text-based bitmap images were a

logical choice and would result in more visu-

ally appealing graphics, but images are large

and static. My original plan was simply to

store all graphics as their respective letters

and positions, since we were limited to text

anyway. This reduced the eventual size of the

game quite significantly, as the only graphics

resources are the actual 8x16 letters (with

the notable exception of a handful of special

sprites, all but one of which were also 8x16),

and had a beneficial side-effect that allowed

me potentially to animate each character on

the screen individually. The problem: since I

was not actually going to be creating the art

myself (if this was the case, I would probably

have hardcoded all of it. Not a pleasant pros-

pect, in hindsight), I needed a way to give

Azimuth the tools she needed to make them

in a format I could import into the game.

Time constraints meant that I couldn’t create

a program to do it easily and efficiently, nor

would it have the features necessary to make

the work less cumbersome. I wasn’t actually

certain if such programs even existed, so I

turned to everyone’s trusty friend, Google,

where I eventually came upon a program

that seemed like it would work perfectly: an

open source ASCII art creation program called

TundraDraw. It supported 24-bit coloured

text and backgrounds and any of the 256

extended-ASCII characters, which seemed

perfect for our uses. The biggest considera-

tion now was whether I could get the game

to understand TundraDraw’s file format

without too much hassle. As it turned out, I

quite easily dissected the files and was able

to load scenes straight from TundraDraw

into the game thanks to a simple, logical file

structure.

DB SAYS ...

Ultimate Quest is a quick and entertaining play which never

hesitates to poke fun at the adventure game genre. If you’re

interested in looking at a satirical game that doesn’t take

itself too seriously, check out:

http://gamedev.openhazel.co.za/filecloset/download.php?id=286

DESIGN

45DEV.MAG ISSUE 20

TundraDraw imposed one inherent limitation

upon the game, however. While the program

was unlimited in vertical dimensions, it had

a fixed 80-character width field to work in.

80 characters conveniently translated to 640

pixels in the font size I was working in and,

while that was fairly acceptable, I would

have preferred to work with smaller charac-

ters for a bit more graphical fidelity. Azimuth

managed to make the most of the limita-

tions, though, and that is showcased quite

clearly from the very first game screen.

The advantages outweighed any limitations,

though. The transition effect was one I

was proud of, and I rather enjoyed writ-

ing the algorithm that would transition any

screen of characters to any other, regardless

of character count or whether or not the

characters match, and then watching it in

action. The way I represented everything

internally meant that, theoretically, I could

transition between any visual elements with

any conceivable effect. A single letter could

transform into a screen full of characters and

vice-versa. Because it occasionally became

rather tedious to see letters fly for the

umpteenth time, some of the transitions and

animations were cut for aesthetic reasons,

but the basic effect still remains in major

scene transitions and in how message boxes

appear only to have the characters fall off

the screen when the player is done reading.

Ultimately, and not disregarding a spontane-

ous decision to apply a post-process bloom

filter to the graphics to create glowing, styl-

ized text, the overall graphical feel and style

of the game was consistent and visually ac-

ceptable. It contributed well to the complete

package.

Oversights, problems and lacking
features

Ultimate Quest was always intended to be

a parody game, poking fun at whatever it

could, including at itself. This occasionally

allowed us to simply ‘write-off’ some minor

features that we couldn’t complete in time

and that most games would be expected to

have. There were some glaring omissions

that were difficult to glaze over, such as the

lack of saving and loading capabilities (offset

somewhat due to the length of the game),

and, most noticeably, the lack of sound that

would have made the game considerably

more complete.

Near the end of development, I also discov-

ered that a few users were having problems

with the game. At the time, I didn’t really

bother trying to isolate the problem since

it appeared to be happening sporadically

and would detract from time that I could

spend on completing the project. After the

competition was over, and after the game

had started receiving a little more atten-

tion, I dedicated some time to rooting out

the cause of the problem (only occurring on

Vista systems, hence why I had not noticed

it in my own tests), and eventually traced it

to an encoding error mysteriously embedding

itself in a .NET function call that would fail

on Vista systems in certain rare cases, which

I duly fixed.

As a whole, though, the development cycle

of Ultimate Quest flowed smoother and

quicker than anything I had done before.

For less than a month’s work, Azimuth and I

had created a fairly complete (albeit short)

adventure title, made completely out of

text, that had succeeded in doing what it was

intended to do.

he Independent Games Festival is an

annual festival held at the Game

Developers Conference, originally

founded in 1998 as an initiative by the CMP

Game Group, who are also responsible for

Gamasutra.com and Game Developer

magazine.

The 2008 festival, 10th in the history of IGF,

will be held at the Moscone Center in San

Francisco on 20 February 2008, and will

award prizes totalling $50 000 split between

the main, mod and student competition

categories.

The Main Competition comprises of the

following seven categories:

 · Audience Award ($2 500). Previous

winners include Savage: The Battle for

Newerth, Alien Hominid and Castle Crashers.

 · Best Web Browser Game ($2 500), which

replaced separate downloadable and web

game categories which were awarded in 2004

and 2005. Past winners include Samorost 2

and Dad ‘N Me.

 · Technical Excellence ($2 500). Winners

include Savage: The Battle for Newerth,

Alien Hominid, Darwinia and Bang! Howdy.

 · Design Innovation Award ($2 500).

Notable winners include Bontãgo, Gish, Wik

and the Fable of Souls, and Everyday

Shooter.

 · Excellence in Audio ($2 500). Past

achievers include Everyday Shooter and

Weird Worlds: Return to Infinite Space.

 · Excellence in Visual Art ($2 500).

Including Castle Crashers, Darwinia, Wik and

the Fable of Souls, and Alien Hominid.

 · And, finally, the Seumas McNally Grand

Prize of $20 000. Previous notable winners of

this award include Aquaria, Darwinia, Gish,

Wik and the Fable of Souls, and Savage: The

Battle for Newerth.

Here’s a roundup of all the finalists in the

2008 competition.

TAILPIECE

SUMMIT OF ACHIEVEMENT
Independent Games Festival 2008

By Claudio “Chippit” de Sa

T

Using innovative new techniques and ideas coupled with long-

standing RTS systems, Battleships Forever is a real-time space

combat simulator sporting ships that you can literally break

apart piece-by-piece.

Nominated for: Design Innovation

http://www.wyrdysm.com/

Audiosurf

If you cannot contemplate what Wipeout

would be as a rhythm game, Audiosurf is just

that: a racer that lets you ride a

procedurally generated embodiment of your

music, with all the highs, lows and traffic

synchronized perfectly to the music.

Nominated for: Seumas McNally; Excellence

in Audio; Technical Excellence

http://www.audio-surf.com/

Axiom Overdrive

Set within an asteroid mine, players are challenged to utilize

unique physics-based gameplay in a 3D omni-directional

scrolling action/puzzle game.

Nominated for: Technical Excellence

http://www.axiomoverdrive.com/

Battleships Forever

TAILPIECE

Cinnamon Beats

An interesting twist on music-based games,

Cinnamon Beats is a puzzle game where the

goal is to use the physics engine to generate

your own music.

Nominated for: Excellence in Audio

http://secretexit.com/games/cinnamonbeats/

Clean Asia!

With a clean, line-based representation, Clean Asia! is a vertical

shooter with innovative new features, and two completely

different ways to play the game.

Nominated for: Excellence in Visual Art; Excellence in Audio

http://www.cactus-soft.co.nr/

Crayon Physics Deluxe

A unique physics-based puzzle game (an

improvement on the original Crayon Physics

prototype) that will take any drawn figure and

bring it to life using its remarkably flexible

physics engine.

Nominated for: Seumas McNally

http://www.kloonigames.com/crayon/

Fez

While initially appearing to be a standard 2D platformer, Fez

adds a new dimension to the genre by allowing the player to

flip the world and project it into 2D from a different angle,

allowing the player to progress in a unique and innovative

way.

Nominated for: Design Innovation; Excellence in Visual Art

http://www.kokoromi.org/fez

Fret Nice

Fret Nice is a rhythm game disguised as a platformer, and

boasting the unique trait of being designed for use with a guitar

controller.

Nominated for: Design Innovation; Excellence in Audio

http://www.fretnice.com/

TAILPIECE

Globulos.com

Globulos is an online multiplayer mini-games environment,

boasting over 20 different games for 2 or 4 players.

Nominated for: Best Web Browser Game

http://www.globulos.com/

Goo!

Goo! is a single or multiplayer game

inspired somewhat by the board game Go, except that

players do battle with physically simulated liquid armies.

Nominated for: Technical Excellence

http://goo.pillowfortgames.com/

Gumboy Tournament

A follow-up to the critically acclaimed

Gumboy: Crazy Adventures, Gumboy

Tournament adds a much requested

multiplayer feature which allows

competition against AI or others players

on LAN, split-screen or over the internet.

Nominated for: Technical Excellence

http://www.gumboytournament.com/

Hammerfell

Appearing mysteriously out of Russia, Hammerfall

is a 2-dimensional, combat-oriented action game

with interesting physics-based combat

mechanisms.

Nominated for: Seumas McNally; Excellence in

Visual Art

TAILPIECE

Iron Dukes

A highly stylized and humourous seafaring adventure

where the goal is simply to accumulate as much treasure

as possible through your pirate endeavours, looting

enemies and gaining better equipment along the way.

Nominated for: Best Web Browser Game

http://onetonghost.com/

Noitu Love 2: Devolution

Noitu Love 2 is a frantically paced action-platformer

with an innovative new mouse-based control scheme.

Nominated for: Seumas McNally

http://www.konjak.org/

OokiBloks

OokiBloks is another sound-based action puzzle

game, where the player controls a monkey named

Ooki in a colourful and musical world.

Nominated for: Excellence in Audio

http://www.ookibloks.com/

Snapshot Adventures:

Secret of Bird Island

Snapshot Adventures is a casual photography

game where the premise is to travel across

the world and collect equipment,

photographs of exotic birds as well as unravel

a mysterious disappearance.

Nominated for: Design Innovation

http://www.largeanimal.com/games/deluxe/

snapshot-adventures-secret-of-bird-island

TAILPIECE

Synaesthete

Synaesthete is a unique rhythm game that attempts

to fuse graphics and audio and create a synergised

experienced of colour and music.

Nominated for: Excellence in Visual Art

https://typo3.digipen.edu/index.php?id=986

The Path

The Path is a visually stunning horror

representation of a common fairytale, Little

Red Riding Hood, promising a unique,

immersive experience.

Nominated for: Excellence in Visual Art

http://www.tale-of-tales.com/ThePath/

Tri-Achnid

Tri-Achnid is a platformer with a unique control scheme

that entrusts the care of a three-legged spider and his

eggs to the player.

Nominated for: Best Web Browser Game

http://triachnid.com/

World of Goo

World of Goo is a charming physically-simulated

construction game, based on the original

prototype on Experimental Gameplay.

Nominated for: Seumas McNally; Design

Innovation; Technical Excellence

http://2dboy.com/

