
1

INSIDE: Penny Arcade Adventures O Design vs Programming O How to make your own sounds
for games O All you need to know about the Google App Engine O Interview with

German Indie developer, Irrgheist O News + Reviews + Other stuff too!

Issue 24 August 2008

2

Development

Reviews

Features

REGULARS

Tailpiece

We nab an interview with the guys from German-based indie
developer, Irrgheist

We’ve gone out and searched for the best
games created in the Torque engine

3

42

No way we’re typing out the full title!

If I could turn back time...

Playing games....Instantly!

We take a look at striking the balance between programming
and design, and how to do it effectively

Part 2 looks at more in-depth content pertaining the
design of your game

Dev.Mag Reader: I need sound for mah gayemz! HALP!
No problem, Nandy is here to save the day!

All you need to know about using Google’s application
engine - and more!

This issue we have a look at Soft Body Physics38

17

23

26

31

9

13

15

4

5

3

EDITOR
Claudio “Chippit” de Sa

DEPUTY EDITOR
James “Nighttimehornets” Etherington-

Smith

DESIGNER
Quinton “Q-Man” Bronkhorst

CONTRIBUTORS
Rodain “Nandrew” Joubert

Simon “Tr00jg” de la Rouviere
Ricky “Insomniac” Abell

William “Cairnswm” Cairns
Danny “Dislekcia” Day

Andre “Fengol” Odendaal
Luke “Coolhand” Lamothe

Rishal “UntouchableOne” Hurbans
Gareth “Gazza_N” Wilcock

Sven “FuzzYspo0N” Bergstrom
Kyle “SkinkLizzard” van Duffelen

Chris “LionsInnards” Dudley
Herman Tulleken

WEBSITE ADMIN
Robbie “Squid” Fraser

WEBSITE
www.devmag.org.za

EMAIL
devmag@gmail.com

This magazine is a project of the South African
Game.Dev community. Visit us at:

www.devmag.org.za

All images used in the mag are copyright and
belong to their respective owners.

I’ve always wanted to write my very own story;
this seems like as good a place as any to start.
Okay, so once upon a time there lived a pretty

little girl. Her name was Sarah.

It’s been quite a juggling act this month; the

post-holiday slump, numerous unforeseen obli-

gations of some of our staff resulting in a bit of a

slanted development cycle, plus the usual post-

Game.Dev competition rush have all contributed

to the veritably mad dash needed to get the mag-

azine done on time. My own DreamBuildPlay en-

try currently taunts me from my taskbar as I write

this, but it is actually down to a heroic effort from

our designer that everything was ready to release

at all – he really does deserve that candy.

Perhaps the major cause of our troubles this

month was the push to get some strong content

in for this issue. We sport a nice shiny review of

Penny Arcade Adventures Episode 1 – On

the Rain-Slick Precipice of Darkness (and I’ll

be damned if I type out that whole name again)

headlining our reviews this month, with a smat-

tering of other GarageGames-, and more specifi-

cally, Torque Engine-related content scattered

throughout our virtual pages.

We also sat down with Irrgheist, the creators of

H-Craft Championship, to hear their thoughts with

particular focus on H-Craft Championship, their

first game release and a title we’ve mentioned

before. Additionally, we’re starting off an excel-

lent new multi-part tutorial with an introduction

in the use of Google’s web application engine for

game creation. Keep a look out for the continua-

tion of that one next month, since it promises to

be an enlightening piece indeed.

You may also have noticed that the design and

tutorial sections have vanished. In an effort to

eliminate some ambiguity and the occasional

overlap between the sections, we’ve decided to

merge the offending sections into a new, larger,

magazine division from this issue onwards. The

new section – named Development – will con-

tain all content relating to game development in

any way, whether it is to share insight, tools or

guides.

Finally, I’m proud to announce that Game.Dev

will have a fairly strong presence at Dream-

BuildPlay this year, with at least two local teams

currently at the XNA-shaped grindstone churning

out their entries. You can look forward to a spe-

cial piece nearer to the close of the competition

detailing each team’s personal experiences and

thoughts.

And that’s about all I have to say this month. We

put a lot of effort into this is-

sue, so if you’re still here: get

reading, already!

~ Claudio, Editor

4

Game Design Challenge.

http://www.gamecareerguide.

com/features/

GameCareerGuide.com’s Game Design

Challenge is a weekly series of activi-

ties aimed at changing the way game

designers tackle design problems and

tries to encourage positive and proper

game design methods. Every week

they present a question and challenge

people to send in their game design to

solve a certain problem; their chosen

winners are then revealed the end of

that week. It’s a fascinating experi-

ment that occasionally results in really

innovative solutions. Have a look at

some of the past challenges and solu-

tions, then give it a try yourself.

Xbox Live Community
Games.

http://creators.xna.com/en-us/

XboxLIVECommunityGames

Microsoft is finally getting ready to roll

out XNA’s biggest gun–community re-

lease on the XBL Marketplace. Soon,

any game created in XNA will have

the potential to be sold on the Live

Marketplace together with other XBLA

titles, earning the developer up to

70% of the revenue generated from

its sale. Pricing for these titles will be

determined by the developer, in the

range of 200 to 800 Microsoft points,

roughly $2.50 - $10.00. If you still

don’t have a Creator’s Club member-

ship now, you have no excuse.

Nonoba’s Multiplayer API
Kick Off is up.

http://nonoba.com/develop-

ers/contests/multiplayerapi-

kickoff

Nonoba have launched a new com-

petition to promote their multiplay-

er flash API, challenging developers

to create a great game using their

API and offering up to $20 000 in

prizes. The grand prize, a clean

$15 000, is a particularly good

incentive to create something cool

and fun. Just remember, you must

use the Nonoba API, and your

game must be a multiplayer title

Gamecues Launched

http://www.gamecues.com/

Sound effects are some of the tricki-

est yet most important factors in a

game, something sadly overlooked

far too often in the indie scene.

This is where Gamecues steps in.

Gamecues is a sound library specifi-

cally dedicated to game developers,

featuring a veritable horde of high

quality sound effects tailored specifi-

cally to the game industry. It’s not

free–as nothing of this calibre ever

is–but a resource of such quality is

invaluable.

5

Irrgheist is a small independent developer based in Germany, founded in 2006 by Philipp Lossack
and Michael Zeilfelder. Their first release, H-Craft Championship (a sci-fi racer in a similar vein to the
Wipeout series), was well received by indie circles for its smoothness. Dev.Mag writer Sven “FuzzYspo0N”
Bergstrom sat down with Philipp and Michael and found out what they had to say.

Sven “FuzzYspo0N” Bergstrom

Irrgheist
Driving home the Big one

6

Dev.Mag: In terms of development, what got you guys

started?

Michael: Going independent is the only way I see to cre-

ate the virtual worlds that interest me. You can’t really

work on your dreams while working for another company.

Also, after switching companies a few times I found it in-

creasingly frustrating to have to start from scratch every

time afterwards, because none of the code I wrote be-

longed to me.

Philipp: Yes, I had similar reasons. On the huge teams

you need them for today`s big games, a single person`s

duties are very specific. Personally I prefer to see the

whole frame of a small project, rather than a very small

section of a huge one.

Dev.Mag: What made you choose the H-Craft game as a

first title?

Michael: It was mainly Philipp’s idea to do that. I liked

playing such racers and it seemed like a good project to

build up a solid technology base. For me it was very im-

portant to build up a toolchain which I could use for further

games.

Philipp: Well, amongst other genres, I always loved Sci-

Fi racers. It also seemed to be a doable task for a small

team. And I finally got the chance to work on that vehicle

design I had in mind for years.

Dev.Mag: What challenges were you faced with when de-

veloping this title?

Michael: The most underestimated task had been the

GUI. You don’t expect that for a racer, but I think this took

at least a third of the whole development time. Just think

about each dialog being reworked a few times and you see

that even 20-30 dialogs will very soon cost you months.

Philipp: Don`t ever talk about GUI...

Dev.Mag: What did you learn about the creation of games

through the development of H-Craft?

Michael: Lots of minor stuff; it’s been some time since

I last programmed a game all by myself and so I used

completely new technology for nearly everything. For ex-

ample, it was nice to see how little overhead is needed

nowadays to write platform independent games when you

select your libs [libraries] carefully.

Philipp: Even the smallest team needs a clear structure

with clear areas of responsibility. At times we mixed things

up a bit, and it didn`t help the progression.

Michael: I actually think that good communication is a

more important key point. We used IM, e-mail, a forum

and some folders to exchange documents, but that was

still not enough. Stuff got often mentioned offhandedly

and forgotten again. I hope using a Wiki next time will

help somewhat.

So...

“Even the

smallest team

needs a clear

structure

with clear ar-

eas of respon-

sibility”

7

Dev.Mag: If you could change things about H-

Craft what would you have done differently?

Michael: I would start earlier to give out demos

for testing. Also by now I wish that I had spent

another month on it to code network support,

but well, it seemed impossible to do that back

then. I still hope we can fix that.

Philipp: It`s a matter of time, but a proper

prototype would have helped to avoid errors.

Basically we just started working on the game

hoping the ideas on paper will work out. Fortu-

nately most of them did, but some did not.

Dev.Mag: Can we expect updates or a sequel

to this great game?

Michael: Maybe. I hope so. Let’s say the

chances are above 50%.

Dev.Mag: What does the future hold for the

team in terms of indie game development?

Michael: I don’t think we will work again in

the same constellation like in the first game.

Financing yourself for more than a year is very

hard and we can’t do that again right now. But

there are other ways to continue and we’re

discussing that a lot. I do currently work as

freelancer, which allows me to continue work-

ing with the Irrlicht engine and improving my

toolchain.

Philipp: Time will tell. Right now we discuss

and try out various things, but no one really

knows where it leads to.

Dev.Mag: If you had any tips for indie devel-

opers what would it be?

Michael: If you get offered a distribution con-

tract then take it. Also use open source wher-

eever you can, working with a community is

very rewarding and I don’t think you get that

so much with any closed source stuff.

Philipp: Michael’s advice has a history for us;

it`s good advice! I`d like to add that indie

developers shouldn`t entirely ignore the visu-

als. There are great small games out there,

but many of them are obviously made by pure

coder teams. That`s fine, but in my opinion

they would profit from some sort of art direc-

tion. I am sure there are enough artists around

who would be happy to join a team.

“The most un-

derestimated

task had been

the GUI.”

8

My main development system was Kanotix, which is a Debian based

GNU/Linux distribution.

For a compiler I used GCC (GNU Compiler Collection).

For porting the game to Windows I used MinGW (Minimalist GNU for

Windows).

My IDE (Integrated Development Environment) was mostly Code::Blocks,

but I also work a lot on the console and with scripts.

When I need some programmer art my favourite tools are Wings3D

and certainly Gimp.

Irrlicht for 3D GUI

ALUT and OpenAL for sound.

Ogg Vorbis for *.ogg file support.

SDL (Simple Directmedia Layer) for joystick input.

FreeType for truetype fonts.

libcrypto++ for creating a distribution key system.

Librariestoolchain

http://www.kanotix.com
http://gcc.gnu.org
http://www.mingw.org
http://www.codeblocks.org
www.wings3d.com
www.gimp.org
http://irrlicht.sourceforge.net
://www.openal.org
www.vorbis.com
http://www.libsdl.org
http://www.freetype.org
http://packages.debian.org/source/etch/libcrypto++

9

In most games, the opening cut scene generally consists of hints of a dark secret, a ter-

rible evil that must be vanquished lest it destroy the world. This first episode of the Penny Arcade

Adventures series of episodic games is no different. Suggestions of dark plots and nefarious deeds

in the shadows of New Arcadia make you question whether this game actually has anything to do

with the popular gaming humour web comic at all. Then your character’s house gets crushed by a

giant robotic fruit juicer, and the game’s tone is set firmly to what you’d expect.

10

Precipice (to shorten the full title

somewhat) was developed by in-

die developer Hothead games, in

strong collaboration with the cre-

ators of Penny Arcade. Using the

Torque engine, they were able to

give the game a distinct comic-

book feel, making liberal use of

cell-shading to give it as close a

resemblance to the web comic’s

art style as possible. They suc-

ceed quite admirably. Even the

player character, whose appear-

ance is fully customizable, looks as

if she or he has stepped straight

out of the comic.

 As for the writing, let it be stat-

ed outright: the game is typical-

ly Penny Arcade in tone. While

their roles are adapted to suit the

game’s story, almost all of the

characters are straight from the

virtual pages of the web comic,

and Penny Arcade references

and in-jokes abound as you trek

through the streets of New Ar-

cadia (“Wang’s Chinese Restau-

rant,” anyone?). That’s not to

say that it’s completely inacces-

sible to those who aren’t familiar

with Penny Arcade, but fans will

definitely get the most from it in

terms of the humour. Be warned;

if you aren’t into more absurd hu-

mour or internet/gaming-culture,

it’s wholly possible that you won’t

find the game (or the comic) fun-

ny at all.

 In terms of gameplay, Preci-

pice of Darkness is an adventure

game/RPG hybrid in the same vein

as the cult favourite Anachronox.

The game is essentially composed

of two distinct play modes: explo-

ration and combat. In exploration

mode, you point and click around

the game’s four main locations,

speaking to characters, filling your

combat inventory by smashing

crates and other possible contain-

ers of goods, and solving fun (but

not particularly difficult) puzzles.

Don’t despair, action fans! A huge

chunk of the game is spent in

turn-based combat with the many,

many different enemies standing

in your way, and it’s handled in a

very interesting way.

“The game is

typically Pen-

ny Arcade in

tone.”

11

The combat mechanic is where the

RPG element of the game kicks in, but

it’s a little different from the RPG’s you

may have played in the past. Firstly,

combat is completely separated from

the exploration element–characters

begin each battle in perfect condition,

so there’s no need to heal characters

or dispel status effects between bat-

tles. Secondly, it has a rather novel

take on traditional turn-based combat.

Each character has three fixed actions

that they can perform while in a bat-

tle: use of inventory items collected

during exploration, a standard attack,

and a special attack. To use these ac-

tions, you must allow the characters

to gain “initiative” for them, much like

the Active Battle Time system in Final

Fantasy. Unlike FF however, your

attack options charge sequen-

tially. Your Inventory initiative

needs to top up before your Ba-

sic Attack initiative starts charging,

and your Basic Attack needs to be full

before your Special Attack can charge.

Using any of a character’s attack op-

tions, regardless of level, brings the

total accumulated initiative for that

character back to zero. Special At-

tacks require you to complete a small

character-specific mini-game to deter-

mine the total damage dealt, which

becomes progressively tougher the

stronger the character gets. This adds

quite a bit of strategy to the battles:

do you heal a character who is close

to death and lose all your initiative? Or

do you wait a little longer and attempt

to deal a devastating final blow to your

enemy with a perfectly executed spe-

cial attack? Death blows could net you

a spectacular shower of gore and an

Overkill bonus; a permanent increase

to your weapon damage. In addition,

if multiple characters have a special at-

tack charged, you can initiate a “team

up” attack which deals massive dam-

age while circumventing the Special

Attack mini-game entirely. Add in the

backup from three support characters

(who can occasionally be summoned

into combat to hit enemies with their

special support attacks), and the abil-

ity to block enemy attacks by hitting

the spacebar at the right time (some-

times resulting in a free counterattack

from the defending character), and

you have a rather fast-paced and dy-

namic combat system that manages to

stay entertaining and challenging all

through the game.

12

There’s very little to criticize about

Precipice, but it isn’t perfect. The

game is stable, except for crashes en-

countered while attempting to use a

certain support character during the

final boss battle. One might find the

game a bit too short, which should be

expected given its episodic nature,

but it may leave the player feeling a

little unfulfilled in terms of play time.

Nonetheless, the game was highly en-

tertaining throughout and never felt

stretched out or padded, so its relative

brevity can be forgiven. Special men-

tion must be made of the excellent

musical score, which might have you

humming a lot of the combat music a

week after completing the game.

 For those who enjoy Penny Arcade

and Adventure/RPG games, Precipice

comes highly recommended. For

those who don’t, it still comes highly

recommended, but it is suggested that

you play the demo to determine if it

resonates with you first. Bring on Epi-

sode 2!

Gareth “Gazza_N” Wilcock

“You have a rather fast-

paced and dynamic combat

system.”

13

The ability to go back in time, to be in more than one place and to relive the past, is one of many

a childhood fantasy. We dreamed of stopping accidents, saving lives, double dating, and other

honourable things. Well in Chronotron, you have to master this power to repair your broken

time machine, which has become stuck in loop mode, allowing you to replay your last few ac-

tions to aid you in finding all of its missing pieces–and that’s all the story you need to get you

started in one of the most original puzzle/platformers of recent memory.

Chronotron

“Levels range

from basic to the

equivalent of jug-

gling nails with

your eyes.”

14

You are greeted by a nice title screen

when the game starts up. Clear, de-

tailed graphics display a cute little

robot with bug eyes and a clock on

his chest. He is your history-faring

counterpart on this adventure. The

graphics are crisp, nicely detailed

and attractively cell shaded. The ani-

mations are a bit basic, but they get

the job done. They are forgiven and

forgotten, though, when you get to

the highlight of the game; the game-

play.

 The game places you in a level with

just your avatar, the time machine

and a few levers and obstacles. Each

stage requires a piece of the machine

to be retrieved, but it will require sev-

eral trips to do it. For example, if the

piece is on a ledge with a platform

beneath, you will need to stand on

the switch to raise it for a bit, and

then return to the machine and re-

wind time. When you step out again,

your past self will go on to do every-

thing you did on your last instance,

while you are free to stand on the ris-

ing platform to retrieve the objective.

Some basic jumping is required, but

this usually focuses on accuracy and

timed leaps, rather than monotonous

hopping from ledge to ledge. These

levels range from basic to the equiva-

lent of juggling nails with your eyes.

 The most impressive thing is the

way the game consistently produc-

es difficult, but not illogical, puzzles

that challenge you to master timing,

platforming accuracy and move-plot-

ting. This is truly a masterpiece, a

fun, quirky and detailed puzzler (with

suitably funky electro music) that de-

serves to be given a try.

Chris “LionsInnards” Dudley

15

Garage Games, the creators of the popular and robust Torque Game Builder have released a new and exciting platform for the gaming

industry dubbed “Instant Action.” If only faced with the name, one would be duped into thinking it is a simple casual flash portal. It

shares similarities to a flash portal (such as Miniclip), but it’s more like its big brother.

“Services such as Instant Action

will no doubt become something to

look out for in the future.”Instant

Action

16

 Instant Action provides 3D

gaming action in your browser.

It brings together the social and

accessible nature of the web

and the competitiveness of 3D

gaming. At the moment the

games on offer are a bit sparse,

but enough to satisfy any gam-

er. The most popular game at

the moment on Instant Action

that Garage Games is flaunting

is Fallen Empires: Legions. It

is an FPS that is similar in style

and play to Tribes. The larger

maps have sprawling land-

scapes. Another popular game

is called Rokkitball, a futuristic

sport that is a cross between

football, rocket launchers and

magno-beams and it supports

up to 8 players.

 The other games on offer

include Marble Blast Online, a

firm casual favourite that has

you rolling a marble through

puzzles. Think Tanks is a neat

strategy game involving tanks.

An arcade shooter in the form

of ZAP (Zero All Productivity) is

also present alongside an ac-

tion puzzler called Cyclomite.

Amongst the games that are

still in development is a rac-

ing game, a hover tank combat

game, an aerial dogfight game

and a frenetic strategy game.

As you can see, there are games

on Instant Action that will sat-

isfy any gamer’s needs!

 The market that Garage Games

are aiming for is quite wide and

will no doubt appeal to a lot of

people. Hardcore gamers who

want a more accessible and in-

expensive gaming experience,

international gamers with no

access to a console and former

core gamers who now do not

really have the time and money

to invest in serious gaming will

find a home at Instant Action.

 The interface and presenta-

tion of Instant Action is done

really well. It is very intuitive

and easy to use, allowing you to

jump into a game very quickly.

The current social networking

features include adding friends

and having a real-time chat

with them. There are loads of

expansion packs and additional

doodads that can be bought. It

includes new avatars, new mod-

els for games, map packs and so

forth. At the moment the only

problem with something like In-

stant Action is the bandwidth

usage. People in countries with

high connection costs and small

data caps (*cough* South Afri-

ca *cough*) will definitely need

to steer clear of Instant Action.

 Instant Action is still in its

early stages of development;

the Open Beta started early in

2008 and at the time of writ-

ing, the service is still in the

beta stage. With the continuing

trend of falling broadband costs

coupled with increasing broad-

band penetration, services such

as Instant Action will no doubt

become something to look out

for in the future. Heck, who

wouldn’t love instant 3D action

in their browser?

Simon “Tr00jg” de la Rouviere

17

Have you ever slaved away at a new project for ages, using every trick that you know to make it visually and techni-

cally stunning, only to have it fall flat when you present it to those philistines that you want to test the game on? It's

a heartbreaking experience, and there's generally nothing left but for you to seek out some equally avid programmers

who will give the congratulations that you deserve. Even then, the victory may be hollowed out by their reluctance

to play your game after they've finished admiring your frame rate.

Design vs. Programming
Rodain “Nandrew” Joubert

18

It’s a tragic truth in the game de-

velopment industry that there are

way too many budding developers

who, at early age, find themselves

with a innate gift for programming,

only to develop this talent without

any due regard for the accompany-

ing skill of game design. While there

are a multitude of coders out there

whose dedication and expertise is

truly awe-inspiring (demo groups,

in particular, produce some fascinat-

ing examples of coding acrobatics),

there is also a sad legacy of games

out there that are technically excel-

lent, but fail miserably on the level

of raw fun.

 The mindset that leads people to

this problem in the first place is the

same mindset which prevents de-

velopers from potentially erasing it.

Getting stuck in the “code trap” is

frightfully easy, and escaping can be

difficult without an external guide.

Sometimes, simply changing your

thought patterns can instantly see

you making much better games; it’s

just a matter of taking that step.

 The number one obstacle is short-

term selfishness. If you’re making a

game with the primary motive of in-

dulging yourself, writing some fancy

routines and stroking your own ego

once you’ve pulled them off, then

you’ll receive your reward in full

before the game has even reached

the consumer. When players realise

this, they’ll switch off.

 This isn’t saying that selfishness is

entirely negative: there is a correct

way to congratulate yourself, but it

entails creating a game aimed at the

player–not the developer–and col-

lecting the hard-earned praise after-

wards for a game well crafted. In-

dulge the end user, and they’ll return

the favour later; this is what good

game design is all about. Becoming

a top designer, therefore, involves

learning to predict what a player

wants and finding a way to give it

to them. People who don’t invest

effort in improving this skill run the

risk of producing consistently poor

games.

 Game developers also need to be

open to learning. This applies not

only to their particular speciality but

also to everything else that is related

to their work. In an article entitled

“Toward the future of game design,”

The Escapist quotes experienced

game developers on the importance

of possessing a wide range of skills.

Richard Dansky of Red Storm Enter-

tainment had this to say: “...take a

little bit of everything. Learn some

math and statistics; you’ll need it for

balancing. Learn to write, or your

ideas will never make it out of docu-

mentation. Learn some psychology,

so you can understand both your

characters and your players. Learn

a little economics, because on some

level, pretty much every game is

about resource management. Take

some lit theory, so you can under-

stand narrative and have a ground-

ing in the great stories that underpin

so many games. Take some his-

tory, because it does in fact repeat

itself, often at 30fps. Learn some

programming and some art, so you

can talk to the other members of the

team and more importantly, listen to

them. In other words, make your

base as broad as possible, because

sooner or later it all comes into play,

and you’ll want as many arrows in

your quiver as you can manage.”

19

Specialising in a single development

discipline (such as programming)

means that you’re severely restrict-

ing your arsenal if you’re working

by yourself. Although it’s not nec-

essary to become a grand master

of aspects such as design, art and

marketing, it helps immensely to be

just a little knowledgeable in these

disciplines. As Dansky points out,

even being part of a team requires

you to have some understanding of

what your colleagues are up to.

 An online article entitled A crash

course in game design & production

emphasises another cornerstone of

game design: planning. The de-

signer’s job often begins long be-

fore the programmer types even a

single line of code, a fact which is

drilled into the reader from the start.

The author mentions, by means of

introduction, that “it’s going to be a

while (at least 6 weeks) before we

write a single line of code.”

 One of the examples given in the

document is the hypothetical game

design process of creating the orig-

inal Pac Man: while it’s easy to sit

down and say, “I want a yellow guy

in a maze who eats dots and gets

chased by monsters,” and promptly

begin coding, there’s far more detail

that needs to be considered before

the game can be practically imple-

mented. Questions include: how

big is the maze? How fast do the

monsters move? How fast does the

player move? Are there any game-

play events that may change mon-

ster behaviour? How will we score?

What should the controls be like?

 Planning your game down to the

last edible dot means that you can

begin programming with the knowl-

edge of exactly what you need to

do, meaning that you’ll avoid the

problem of overdoing your code

or, worse still, coding yourself into

a corner. Using the above points,

one can begin constructing a gross-

ly simplified representation of the

differing concerns that program-

mers and designers face:

20

The Designer’s Questions:

What do I want to add to this game?

Why does the game need it?

How can I make it fit in with the rest of the game?

Will project/coding constraints permit me to add it?

Will the player enjoy it?

The Programmer's Questions:

What does the game design require of me?

What's the best way of implementing this?

Can I justify my code's importance to the design?

Am I leaving the code open for later design needs?

The designer's fourth question is naturally of con-

siderable importance, and requires co-operation

with the programmer and other team members.

Almost all of the programmer's questions depend

on a solid design scheme. Should a developer find

themselves in the position of both designer and

programmer, then the issue of communication be-

comes moot: however, they are still required to

ask themselves both sets of questions in order to

maintain a reliable project.

 Reflect critically on your own game development

thus far. What has improved in your projects over

the time that you’ve been developing? Is it the

quality, originality and entertainment value of the

finished product, or perhaps an increased ability to

complete what you’ve started? Chances are that

you have the right ideas about game design and

are well on your way to developing that bestseller

one day.

 If the technical level of your finished product

has increased but your games consistently meet a

poor reception, step back for a moment and ask

yourself if you’re following a good design philoso-

phy. Try following the basic points outlined here.

Get in some practice by entering design-related

competitions such as those on Game Career Guide

(http://www.gamecareerguide.com/), or read up

on design articles both on the Internet and in Dev.

Mag.

 Remember: design isn’t just something that

game developers are trying to force on those hap-

less programmers who just want to get on with the

coding. Good design practices are an important

part of ANY major project, and even if you take

your programming into a career that has nothing

to do with game development, you’re going to go

a lot further if you know how to think like a de-

signer.

 Finally, this article isn’t the be-all and end-all of

good design practice. There are a few references

to good design practice in here, but you’ll probably

be a lot better off checking out other Dev.Mag ar-

ticles and online resources if you want to get more

insight on techniques and design experience.

 What you definitely should learn from all this

chicken scratch is the fact that design IS a sepa-

rate entity from programming and it IS important

to figure out. Use this article as a springboard for

readjusting your outlook when it comes to games,

and remember to consider design whenever you

embark on a game development venture. Once

you get the attitude right, you’ll discover that the

knowledge–and the adoring fans–will soon follow.

21

MYTH: Design is easy.
As the Game Career Guide puts it: being a designer

requires you to think like both a game designer and

a player simultaneously. This can be a real head-

ache, and while the designer may not be faced with

the particular challenge of getting a game to work,

they need to make it work in a way that is appealing

and logical to a player. They need to take the con-

straints of available technology and the overall game

style to make something that is new, interesting and

well-balanced. It's not only the major gameplay de-

cisions that have to be figured out: every corner of

a level needs to have a purpose, as does every item

placement, every enemy and every situational puzzle

that the player may (or may not!) come across. The

designer also needs to be comfortable when dealing

with matters like statistics, balancing and game dif-

ficulty. With every single concern above, they need

to ask themselves the same question: what would

the player think? Or, more accurately: what would

ANY player think?

MYTH: Programming is independent of game design.
Ideally, programming should bend to the will of good design, though it's also true that

design needs to respect the limitations of realistic programming. To put it succinctly:

the two are bound to one another. Putting forth a design for the Most Unrealistically

Awesome Game of Ever is going to fall flat on its face if the project is way beyond any

logistical and technological feasibility. Similarly, the idea that you can start coding up

your Most Uber Awesome Game of Ever without a well detailed plan of what it will ul-

timately need usually ends in grief, code rewriting and project cancellation. Your code

needs to follow the direction and spirit of your game's design from the start, so that

the code can deal with exactly what the game is likely to throw at it; anything more is

a waste of effort, anything less will most likely cripple the project later.

MYTH: Designers are all about art and drawing.
Not so. As explained already, good game design goes beyond sketching cool

monsters and locations to fit into the gaming universe. Designers need to

justify a multitude of game development choices: it's all very well that you're

faced with a spike-tailed gremlin, but where should the player face it? What

resources should be at their disposal to help fight the gremlin? What purpose

does the tail serve? Would another monster not do better? Does a gremlin

even have a place in a World War 2 shooter? Design choices may be based

around situations that the player barely gives any notice to at all: do we want

five health potions present in the secret bonus room, or six? How injured is a

player likely to be at this point? Would the advantage of discovering the secret

room be considered too unfair? For that matter, how easy will it be for play-

ers to discover the secret room? Does it make sense in the game world? The

questions just keep coming, and designers need to answer them all.

MYTH: Players appreciate good programming.
Unless your players are themselves programmers or developers, it's unlikely that they're

going to stop and directly appreciate the coding that has gone into the game they're

playing. Certainly, a solid code base is important to reinforce a well designed game–in

fact, players will be rather nastily reminded of the underlying program if they encounter

a particularly severe bug–but throwing a few bloom effects into a sub-par game will

rarely persuade anyone to give something a second shot. Putting some appropriate

wizardry into a good, solid title is a much better idea. Don't program to impress players.

Design to impress players, and then write the necessary code to back it up.

MYTH: If you can program well,
you can design a good game.
Sadly, this is not strictly true. Game design is a job

in its own right, in the same way that you can be a

3D artist or programmer. There's certainly nothing

that stops you from being both a good program-

mer and a good designer, but many people over-

look the fact that despite being something which

is often referred to as a “soft learning field,” good

design comes with experience and effort. Like pro-

gramming, people can enhance their design skills

through practice, reading up on design articles

and even entering Internet competitions. Starting

a project with the aim of building your gameplay

around that new lighting effect you learned–rather

than the other way around–may well cripple the

end result. That is unless, of course, your work

incorporates light-based gameplay that stemmed

from a carefully considered design choice!

Mythbusting

22

23

Design
Documents

Well here we go again: last time we

had a look at how game design documents

can benefit us; how they can help us with

the overall process of game development;

and perhaps provided enough motivation

for us to use them for once. In the sec-

ond installment we are going deeper, into

the actual contents of a design document,

specifically aimed at games. Software de-

velopment at all levels should have design

documents but games are a unique and

interesting beast when it comes to com-

pleting a project. There are team dynam-

ics that will never exist in other areas of

software development; there are constant

improvements and developments in the

area of hardware and graphics capabil-

ity; and of course, there is the competi-

tion. Sticking to your guns on a design is

where the focus should be set to ensure

that games are made, instead of unful-

filled dreams. More important than get-

ting through a design document is having

one of value. This is what this article aims

toward; providing some clarity on the con-

cept of the design of a game.

 Each section will refer to a section in

the supplemental example design docu-

ment which will be available on the dev.

mag web site. Again, there are no rules

when it comes to the creation of a docu-

ment covering the design of a game; this

article aims only to lay some guidelines in

the current game dev world.

The Need Continues...

Sven “FuzzYspo0N” Bergstrom

24

The Birthplace.
The bedroom has long been known as a hotbed

of dream activity; indeed dreams are formed at

the mere spark of a good idea. The internet can

provide easy access to necessary development

components and one can easily put a small team

together; suddenly, making a game in your spare

time seems like something simple to achieve.

Unfortunately, a good idea and a team of eager

and willing collaborators is not enough to make

dreams a reality. The birth of a game should

be in its design and its documented processes;

the actual working through of what is to be ac-

complished, and how. This is the birthplace of a

game.

The Conception.
The vision of a game brought to life is exciting, but what does it take to generate a design

that is realizable and practical to implement? The game design document should start with

something important and relevant to any game; the game concept. The concept is what

makes the game stand out, and is based on the original idea. The game concept itself should

manage to explain all aspects of the game in a condensed form. Keeping the relevant things

in the fore and leaving the details for the body of the document. Explaining how the game

works is easier in detail, but the ability to describe the overall gist of a game within a few short

paragraphs will ease the game into being. The example design document contains good and

bad examples of the aforementioned skill, and using it as a reference is up to you.

 This condensed form is not to say that the game concept section of the document should

be short at all, but it is aimed at explaining, in as brief a manner as possible, the game in

its entirety. Some things seen in commercial design concepts are relevant information to

the developers themselves, as well as the business and marketing sides. Brand analysis of

the game and its characters; competitors games that rival the new game concept; stepping

stones that this game has take to make its way into the actual design process; the purpose of

the game; goals of the game; and of course, the story concept in full. For example: “Game

Information : <game name> is a third person action adventure game featuring stealth,

puzzle solving, and fighting game play. The game will be developed for the Xbox360 and PC

platforms.” This, is the art of conceptualising a game into a design document. As with most

documents, the concept is somewhat of an introduction to the rest of the design.

25

The Growth.
Seeing as the document now has an introduction we can start to lay some meat on the bones.

Extracting the major points from the first section and expanding this will start to give more of an

idea to each person involved as to where the team is headed. It also helps to give perspective into

certain aspects of the game that were unrealistic, and exists to prevent the addition of features and

changing large amounts of the original concept. Of course, it is your game; you may change what

you like, but it is important that once a team have decided the path they want the game to take,

that the outlining of the game itself does not introduce unnecessary game play dynamics and start

to remove from the original concept. Sticking to the concept, helps to keep the game development

plausible and it also helps to lessen the likelihood of a failed attempt. Do not be afraid to strip entire

aspects out of the game whilst the design process is in motion; making a realistic game design is

important, but keep in mind what games are for, fun and entertainment.

 As the document grows, you start laying down things such as: a detailed game concept; how the

game handles input; how it displays information to the user; how the game play comes together;

how the menu structure will be laid out; how the art direction will correlate with the game concept;

how the game modes are broken down into parts; how each part works and the resulting effects;

how the game creation process will be expanded by creating the required tools; how the tools will

be used to further the development of further games in the series and/or the modding of the origi-

nal game; how the controls will be used by the player and how the controls affect each element

of game play; how the player interacts with the game environment; how each piece of the game

falls together to make something of a playable experience; which characters will be introduced into

the game and at what point in the game they become important; how AI or multiplayer games

should work; how the enemies react to the player; how vehicles should work; how boss levels or

major events should happen; a description of effects and camera motion; how the sound is meant

to come across to the player; whether there is sound at all; whether the lighting controls the game

play at all; and much more.

 The above list is minimal and spans many genres. Getting across the important aspects of the

design should be viewed as though one was never going to see or interact with those developing

the game itself. Explaining every possible detail sounds boring, but it will make sticking to and

finalising a game much more feasible than a random attempt at explaining an idea.

The Birth.
All in all, there is a lot of space for making up whatever suits

you when it comes to the design of a game, but when all is

said and done, sticking with the tried and tested works more

often than not. Reading as much as you can about the topic

is often a good choice, and trying different approaches is

always something that’s acceptable. Focus on details and

focus on games. Don’t just make designs, make games!

26

One aspect of game creation that constantly seems to stump the average hobbyist developer is the mat-

ter of sound creation. Nowadays, experienced players can go onto the Internet, download a few indie games and

easily pick up on what one may call ‘stock effects;’ sounds that appear in a whole host of games because developers

frequently resort to the same online libraries to get their beloved game noises. Favourites include ‘Famous Bird Chirp’

and ‘Ubiquitous Cow Moo.’

 This is not strictly the result of laziness (even though we’re all admittedly lazy at heart). Many developers out there

are very intimidated by the idea of sound engineering; a widely held misconception which usually prevents people from

trying it out. While professional audio manipulation is definitely not something to be taken lightly–those who make a

career of it can tell you about the painful investment in time and equipment it requires–there’s nothing that stops the

casual enthusiast from jiffy-fixing a little bit of sound magic to suit their own needs. Anybody can go into Paint or GIMP

and make crude, but serviceable sprites to serve their gaming ends. The same really does apply to sound; it’s just not

advertised enough.

Mouth to

Microphone
Rodain “Nandrew” Joubert

“My mouth doesn’t

sound like a laser

explosion.”

27

DEV.MAG READER: “Right, then! Give me a sound tutorial!”

Well, if you insist. There is one quick way to do things, and it only requires you to cover three

bases:

(1) Believe in yourself. This sounds hideously corny, but it’s true. The number one ob-

stacle that prevents most developers from sound crafting is the idea that it’s too difficult. This is

simply not true. If you want to create A-class audio, that’s one thing but working with the basics

is another matter entirely. Take a moment to acknowledge that you have the capability. If you

have doubts, remember that this article is aimed at doubters. Take a deep breath, and move on

to the next step.

(2) Secure basic equipment. We’re talking really, really basic here. You only need

a microphone. Nothing fancy. Just an ordinary, run-of-the-mill microphone. All you want is

something that can plug into your computer and let you record sound. If a twig and a wad of

bubblegum achieve this, then so be it.

(3) Get a sound editor. One which comes strongly recommended is Audacity. It’s a tiny,

2 MB download and it’s free. It’s also reasonably powerful.

Ready? Great. Be sure to take notes!

STEP ONE: Press the big red button in your sound editor.

STEP TWO: Say something.

STEP THREE: Stop the recording.

Congratulations. You’ve just made your first sound effect. In less than 300 words, you’ve been

given a complete guide to basic audio generation. Pat yourself on the back; you’ve done well.

http://audacity.sourceforge.net/

28

DEV.MAG READER: “Hey! That was the worst tutorial ever!”

Maybe, but basic sound generation is all about your attitude. It has nothing to do with learning advanced

techniques; these come through experimentation and real tutorials. This article isn’t a tutorial. It’s an attitude

shifter. Tutorials are nasty and intimidating; they imply steps, and studies, and the need to pay close attention.

This article requires none of those (though your attention would be quite welcome).

In short: the tutorial section is officially over. Now it’s time to really learn something.

DEV.MAG READER: “This isn’t very useful.”

Let’s tell you why this really is useful:

(1) You’ve just created some original material.

That’s a big step beyond what most developers have,

and the fact that you uniquely generated it means

that you’re running a 0% risk of somebody suing you

for millions because you stole their intellectual prop-

erty and sold it as part of a blockbuster game.

(2) You’re now able to tailor sound effects to

your game’s specific needs. This is incredibly im-

portant because while there are a lot of free sounds

on the Internet, the people who made these sounds

can, at best, only guess what may be suitable for any

number of games out there. When we’re talking about

any number, we’re talking about a frightfully massive

number. What’s the biggest number you can think of?

Chances are that the number of potential games is

bigger. It’s probably best if you didn’t even try, you’d

only end up hurting your brain.

 To give a (somewhat true) example of the problems

with pre-made sound libraries, we have a look at the

story of Joe Developer. Mr. Developer (he gets a lot of

flak for his weird surname) wants an explosion sound

effect for his laser gun’s wall impact. He goes to his

friendly local directory of 1000 Free Sound Effects to

hunt some down. About 970 of these are in the “com-

pletely wrong” category: bird whistles, water-going-

down-drain noises and other various effects which

are clearly meant for something else. This leaves 30

explosion noises, about 25 of which are in the “way

off” category: they’re explosions, but sound either like

sparklers or nuclear meltdowns. Not cool.

 Of the five remaining, four are in the “getting

warmer” category; they’re in the neighbourhood, but

they’re not quite right. They may be good enough

to sound right on their own, but plugging them into

the game and giving them a test drive reveals that

they don’t have that particular je ne sais quoi. The

one remaining effect tends to go into the “closest fit”

category–it’s also not exactly right, but it stands out

from the rest so you may as well go for it–and hey, it

may even be quite serviceable, but things like explo-

sions are one of the culprits of generic sound, so don’t

be surprised if you hear it coming back at you from

some other game later. Moreover, you may want ex-

plosions for several different weapons in your game.

Do you repeat the same noise for all of them? Or do

you select one of the other, less desireable noises?

You may even want a sound effect later for something

that isn’t quite as generic as an explosion, and you’ll

be hard pressed to find anything at all in your free di-

rectory. That’s where your unique approach of sound

generation comes in.

29

DEV.MAG READER: “My mouth
doesn’t sound like a laser explo-
sion.”

Really? Imagine a laser explosion in your

head (not an actual explosion in your head,

just the sound). Get a very clear idea of it.

Then think, “It kinda sounds like ...” and try to

get the closest noise using your mouth. My

idea right now is kinda like “kwisk!”

 So, I’m going to say “kwisk!” into my micro-

phone. This will sound really, really stupid.

When you’re in this situation, try do it alone

with the door closed and the lights dimmed.

If you get caught by somebody, either claim

to be testing the mike or explain that you’re

clearing your throat in a really weird way.

Aside from that, just grin and bear it. Things

will be a lot better once you’ve got the sound

onto the computer. You may need to try this

several times to get just the right tone and

speed. It’s a matter of making a few record-

ings and selecting the best one.

DEV.MAG READER: “My mouth still isn’t a laser ex-
plosion.”

Fair enough. A lot of sounds are just too abstract to instantly be repli-

cated by our vocal chords. That’s why you’ve got the software to help

you–use it. Adjusting pitch and speed alone will give you considerable

flexibility and offer some very convincing sounds. Checking the effects

menu of your sound recorder will yield a lot more than that, and you’re

free to just open tabs and fiddle. You don’t even need to understand the

stuff that’s thrown at you (though it helps).

 Remember; even if you still pick up that your flashy new sound effect

was originally a rather scratchy “kwisk!” you should pay heed to the fact

that you are actively looking for the flaw. A current project of mine works

exclusively on mouth-based sound effects which occasionally sound so

convincing that players ask me how I find free effects to match my game

so well. Being in the know, however, I can still hear the strangeness in

the noises which others miss out on.

 For the record, these sound effects include: robot voices; explosions of

various sizes and lengths; slime effects; throws; bounces (various materi-

als); glass shattering; laser guns; mechanical motions; swinging blades;

several fancy pickup noises and many esoteric sound effects which are

almost impossible to find in standard libraries. Many of them came from

the family of “swish!”, “shlock!” and “shwee!”

DEV.MAG READER: “That’s
neat, but surely this can’t work
for everything?”

To be honest; it doesn’t.

Many of them came

from the family of

“swish!”, “shlock!” and

“shwee!”

30

DEV.MAG READER: “Thanks for being honest.”

No problem. I already said that this isn’t a tutorial. I’m not trying

to make you into a maestro. I’m encouraging you to experiment

and arguing for the viability of home-brewed sounds. Using the

onomatopoeic mouth approach is just something for you to occupy

yourself with while I make my point. It’s not some deus ex machi-

na. If you’re not meticulous, your resulting sounds may sound

quite cartoony–great for more light hearted games, but perhaps

less appropriate for gritty gun-fests.

 Starting with your mouth, however, can lead you on to other

things: one day, when you’re looking for that particularly crunchy

set of footsteps, you may be encouraged to put other props near

the microphone. After some deliberation, you could get a box

of (clean) kitty litter, put on some boots and record one or two

stomps for the right effect. After learning how to successfully use

props, you may even be inspired to try more complicated stuff. Or

stay where you are and refine your technique. The choice is yours,

and either way you’ll be getting better at making sounds without

even thinking about it. Do it for long enough and you’ll look back

in wonderment at how scared you were before you started sound

engineering (admit it, you were scared).

 Basic sound effects are not difficult to make. They just aren’t.

You could have a lisp. You could be a 13-something boy whose

voice is breaking murderously. You could be a repeat winner of

the “World’s Worst Orator” trophy. It’s not a problem. All you

need to do is overcome your shyness, speak up and aim at the

microphone. From there, things will pick up. All you need to do

is try a little.

A few more tutorial-like things:

Do you want to get your sound over to the computer more effectively? Here are

a few basic pointers to help you along:

(1) Speak up. Your computer needs something to work with, and you shouldn’t

let shyness get in your way. Just don’t scream, or you’ll get that nasty fuzzy ef-

fect in the recorder. Experiment to see which volume works best.

(2) Beware of microphone “popping”. This is sound distortion caused by the

harsh enunciation of sounds (anything with the letter “p” is usually a culprit), so

avoid spitting out your words. Speaking at an angle to the microphone some-

times helps.

(3) Keep the microphone at a reasonable distance. Choking hazard aside, swal-

lowing the mike won’t do you any good; it picks up your breathing easily and

there’s more risk of popping.

(4) Give yourself plenty of recording time before and after the sound. Don’t

race; you can always trim it afterwards. More importantly, being too eager with

the record/stop button may have you cutting off sound at the beginning or end

of your effect, forcing you to record again.

(5) Make sure you’re in a quiet environment. Background noise may not seem

prevalent in the recording software, but you’ll certainly notice it more when the

full sound effect is played in-game.

31

Using Google App Engine for Web Games

Google App Engine provides a compelling offer for deploying web applications.

In this article I give a brief overview of the technology. In next month’s issue, I will

show you how to implement a simple game on GAE.

The web is a wonderful platform for indie-games. The biggest advantage is certainly that distribution is so much

easier, but the recent explosion of web technologies has opened the doors to possibilities that have not been available

before. Here are some examples:

•	 Microsoft provides Silverlight, and Sun, JavaFX, as alternatives to flash.

•	 GarageGames provides InstantAction – Torque Game Engine games in the browser.

•	 Several social networks (such as FaceBook and Flickr) come with API’s that allow developers to hook into their

networks and allow their applications to take advantage of the user relationships and tagged content.

And of course, the features and support for traditional web technologies such as JavaScript and Flash has steadily im-

proved as well.

Herman Tulleken

http://code.google.com/appengine/

32

What is Google’s App Engine?

Essentially, the GAE allows you to use a set of powerful, yet easy

to use API’s, and run your web app on Google’s infrastructure.

You can get started for free – and the free quota is more than

enough for a beginning: 500MB of disk space, with enough CPU

and bandwidth for about 5 million page views per month and

2000 mails per day.

 And really, it is hassle free. The SDK is easy to use, and a

simple update script makes it a one-step process to deploy your

app on the web. The API’s provide useful services, including au-

thentication using Google accounts. The API’s are well designed,

and well documented (and of course, the search feature is excel-

lent!). It has also been demonstrated that it is possible to run

your GAE application on other hosts, so you won’t be locked into

Google technologies. AppDrop is a proof-of-concept that runs

GAE apps on Amazon’s EC2 (Easy Computing Cloud. See http://

appdrop.com/).

 There are some drawbacks however. At this stage Python is

the only language supported (although, you really should know

Python). It is the scripting language of many game related tools:

Blender; XSI Softimage; RealFluid; Panda3D; to name a few.

 The server only works with HTTP request cycles. So you prob-

ably won’t use GAE for your real-time MMOG. The API’s are not

infinitely powerful, and I particular miss some features in the im-

age manipulation API. However, Google is sure to develop them

further, and of course, the fact that the API’s are simple makes

them quick to learn.

What you should know before you get a
Google App

Because of some limitations at this point, you better make sure you do

not do something that you will regret later.

When applying for a Google App Engine account, you need a mobile

number to which Google SMS’es a key that you need to sign up.

For every mobile number, you can only get 10 applications.

You cannot delete any of your applications.

You cannot change the name of any of your applications.

You can either configure an application to be verified against arbitrary

Google accounts, or Google accounts from your Google App domain only.

You cannot change this preference once the account has been set up.

You can link your app with an existing domain (so even if you chose

some ugly sub-domain of appspot.com, you can still have pretty URLs if

you own a domain name).

The current release of GAE is still a preview release. Among other things,

it means that if you exceed your resource quota, you cannot buy more.

You can apply for additional quota, but it is not guaranteed that you will

get it. So GAE is not quite business-ready yet.

33

How does it work?
Every Google app consists of a client and server. The client simply communicates with the server via HTTP requests, and can be implemented in any technology (see the

links at the end of the article for some examples). It is very common to use the browser as the client application, in which case the Python application spits out HTML to GET

requests. These HTML pages can then access CSS and JavaScript files in the usual manner, and can contain forms (or JavaScript widgets) that allow the user to interact with

the application.

The server part is a Python application that runs on Google’s servers. Essentially, the server application sets up a mapping between handlers and URLs. A handler is simply

a class with methods that gets executed when a HTTP request is made for a certain URL. For example, the URL ‘/view_high_scores’ might be mapped to the class Vie-

wHighScoresHandler. This class will implement a method called get, which will read the high-scores from the database, and then render out an HTML page that shows all

the high scores. This page is then sent to the requester’s browser, where it is displayed.

34

Google API’s

The API’s provided by GAE takes a lot of the

grunt work out of developing a web application.

Below I give a brief overview of the API’s.

Datastore
The data store is where all your data is saved.

Data is retrieved from the datastore with SQL-

like queries through Google Query Language

(GQL). Because it is designed for scale, the

datastore is not a relational database, and some

typical SQL constructs are not supported (such

as the join operation).

 To define a record type (a “row” in the record

“table”), you simple define a Python class with

the appropriate properties. You always have

your data as an instance of this class, so it is

very straightforward to work with it. Except for

the usual types (string, integer, and so on), the

data API also comes with some useful high-level

data types, such as dates, time, lists, and geo-

spatial data.

Google Accounts
Instead of rolling out your own user man-

agement system, you can simply build on

top of Google accounts. This means you

do not have to implement a registration/

log-in system, and users with Google ac-

counts can automatically log in. In particu-

lar, this means you do not have to worry

about saving (or rather, not saving) pass-

words, or how to handle the “forgot my

password” case. You only have access to

a users email and nickname, so you still

need to implement parts for storing ava-

tars, or other user data. In some cases

you might prefer to not use this API; you

can still roll out your own user manage-

ment from scratch.

Other API’s

URL Fetch allows you to make use of other web ser-

vices. Simply put, it allows your app to make HTTP

request to other applications. For example, you might

implement a treasure hunting game using Google’s Map

API, or you might serve dynamic images to illustrate a

game narrative from Flickr.

 The Mail API allows you to send mail using Google’s

framework.

 Memcache is provided to boost performance of your

apps. Essentially, it allows you to have data for quick

access in “memory” instead of the datastore.

 The Image Manipulation API provides some funda-

mental image manipulation services, mostly elementary

transformations such as scaling, cropping, and rota-

tion.

35

How can having a web server enhance my games?

Provide dynamic and user-created content. Using a web server for a

data driven game allows you to make automatic updates and roll out episodic con-

tent seamlessly. As a bonus, you can let players develop their own content – so

enriching their own experience, and help you to provide more content for no extra

cost.

Provide large, persistent worlds for games with many players. In

LAN multiplayer games, the world goes away (or, in some cases, to sleep) when

the players break up; but the world in an online game can go on regardless of the

players, making it much more like a real place than can be done with LAN-type

multiplayer.

Build a community. The impact of a game can be greatly enhanced when the

players are given means to exchange information, compare their skills, and create

challenges that do not form part of the original game design. Not only do players

spend more time in the game, but they also recruit other players much more ag-

gressively.

Allow different kinds of multiplayer experiences. Facebook games such

as (chess and Scrabulous) are good examples of what is typically possible: player’s

can invite each other to join, challenge other players, and turned based games can

stretch over many days as players play whenever they have a free moment.

Keep track of player statistics. This can both enhance game play (by pro-

viding the user with a history of his progress, records, and so on), and be useful

for analysis (to tweak the game for better gameplay, or making business decisions

for increased profit).

So how can I use Google App Engine for my Games?

Implement your game as a full-fledged web application. This

is perhaps not a good idea for games that require intensive rendering (but

this really depends on the client technology you use – look at what Garage

Games did with InstantAction), but 2D adventure games, puzzle games and

turn-based strategy games are perfect candidates for web deployment. The

links at the end of the article are all games running on GAE.

Build a portal web application to embed a stand-alone game.
In this case, your game still resides on the web, and is accessed through the

browser, and hence is bounded by the same constraints as the option above.

However, here the game is a standalone application, and does not make HTTP

requests. Instead, the web site in which the game is embedded provides ex-

tra features for players, such as forums.

Build a web application to support a stand-alone game. Here you

can deploy your game on the desktop, but a web application provides extra

features for players as above. Build your game as a desktop application that

communicates with a server through HTTP requests. In this case, you needn’t

worry about rendering, although updates over the network will still be limited.

However, you can still have high score tables and player ranking that update

over the internet, and support at least limited interaction between players.

Conclusion
I would not yet use GAE for business critical software, but it is defi-

nitely worth looking at, especially for projects with a tight budget

(such as indie games!). Like many of Google’s other technologies,

this one is a delight to work with!

36

Resources
Using GAE with other technologies

AJAX

http://code.google.com/appengine/articles/rpc.html

Flash

http://aralbalkan.com/1318

Games apps on Google App Engine

http://www.ajaxbattle.net

	 AjaxBattle is a multi-player real-time strategy game for 2 to 4 players. It is a web-based version of the old X-Windows game xbattle.

http://uboggle.appspot.com/

	 uBoggle is a app to play Boggle – the popular word making game.

http://mnk.appspot.com/

	 This game lets users set up most types of x-in-a-row type games – can be played against another online player, or the computer.

http://gaesudoku.appspot.com/

	 Sudoku.

http://games.wtanaka.com

	 Card and board games.

http://www.guessasketch.com/

	 A multiplayer game where players guess what other players draw.

http://achi.appspot.com/

	 A tic-tac-toe-like board game.

http://photomunchers.appspot.com/

http://jamendogame.appspot.com/

	 These two games are really methods to get users to tag images and music, respectively. They illustrate how to tap into other networks.

37

38

The cloth physics simulations we covered last issue were only a small part of Blender’s simulation
capabilities and, in fact, a subset of the soft body physics system that we’ll cover now. The soft body simulator allows

you to more accurately represent objects that are malleable and otherwise not entirely solid; basically anything that may

deform under certain conditions is fair game (which is basically any solid object in the real word). So let’s see how it all

works, shall we?

Blender
Soft Body Physics

Claudio “Chippit” de Sa

39

Setting up

Add a cube to a blank scene, then, in edit mode, subdi-

vide and smooth it a few times. This will give us a nice

highres mesh with rounded edges to use for our defor-

mations. We’re going to try and make this behave like a

blob of jelly.

 With the new cube selection, navigate to the soft body

physics options. You’ll find them in the same tab that

the cloth physics options were located: Physics Buttons

under the object menu. Click the soft body button to en-

able simulation on the selected object, disable ‘Use Goal’

(I’ll explain why in a bit) and you’re set to go. Hitting

Alt+A in Object Mode will send the cube falling under the

effects of gravity and you’ll observe all the glory of the

soft-body system.

 Well, no, not really. However, you’ll recall that this

unexciting event is pretty much exactly what we started

with last month. What makes it different, however, it was

will happen when the cube collides with something (or

something collides with it). Add a plane a little under the

cube, run the animation again and see what happens.

Remember to enable collision on the plane, just like you

did with the flagpole last month.

40

Settings and tweaks

Oh, but this doesn’t look right, does it? It’s collapsed in on itself. This is where

all those values in the soft body tab come into play. We’ll need to adjust those

variables in order to obtain the results we want. To do this it’s best to first un-

derstand how exactly the soft body system works.

 Soft bodies work by defining ‘springs’ between the edges of the mesh. These

springs will help the edges retain their correct length and orientation relative to

each other and, effectively, allow the mesh to deform while still preserving its

basic shape. Most of the options in the soft body tab adjust how the springs

behave in different circumstances.

 Refer to the image for an explanation of the major options in the tab, and

then set your values to match those pictured. Animating now, while exponen-

tially slower, reveals behavior far closer to what is expected of an object such

as this.

41

Making it prettier

Like the cloth physics engine we examined last time, soft bodies use the vertices of meshes to deform objects with the Blender particle system. As such, just like

with cloth, soft bodies are also affected by particle fields such as wind, and can be animated using traditional keyframe methods. To do this with soft bodies, you’ll

re-enable that ‘Use Goal’ option we turned off earlier. This makes vertices stick to predefined keyframe positions, but still behave like a soft body. The variables

there define the weighting between animated positions and physically simulated behavior. Mess around with these values if you’re animating soft bodies using

keyframes.

 Additionally, all softbodies, and in fact most of the simulated objects, can also interact with each other, as long as all objects involved have collision enabled like

we’ve done with the floor. The final render you see here is with two identical soft bodies, using the settings above, colliding with each other. Some of the material

settings I’ve used for this final result are out of scope of this tutorial, but, as always, this file can be downloaded from the Dev.Mag website if you’re curious as to

how I’ve obtained this output.

42

Taking

Torque
For a spin

We’ve trawled the internet for you and selected a handful of games

powered by GarageGames’s Torque Game Engine. Here’s what we

thought of the ones we took out for a spin. Three games; three

viewpoints; one tailpiece. What will we think of next?

Simon “Tr00jg” de la Rouviere

43

Bridge Construction Set.

When you watch Discovery Channel (or

something similar) you can’t help but stare

in awe at the vast valleys and rivers that

mankind have conquered via a bridge. With

Bridge Construction Set it confirms just how

difficult it really is to build a bridge. As you

might have gathered, Bridge Construction

Set is all about building bridges. The game

play is quite intuitive–build a bridge. The

first few levels are really easy, which is to

be expected. The later levels really chal-

lenge your spatial thinking as you have to

juggle your limited budget with the varying

weights of materials stretched across hu-

mongous ravines.

 The graphics aren’t spectacular, but the

game doesn’t really need great graphics.

The UI is tad unintuitive at first, but in the

end Bridge Construction Set is a really fun

game for the intellectually tuned. Masoch-

ists will love the later levels and sadists will

really enjoy sending cars and trains into the

abyss.

44

Kingdom Elemental: Tactics

Every gamer has been faced with fantasy lore.

Some are good and highly engrossing while oth-

ers just confuse you with unpronounceable elfin

names and all sorts of wild creatures that missed

the sign to the local gene pool. Kingdom El-

emental: Tactics starts by accepting that most

fantasy lore actually sucks. The narrator mocks

fantasy, the game and sometimes the player.

This is actually really refreshing alongside the

strategic fare.

 Kingdom Elemental: Tactics is a mix of real-

time strategy, turn-based strategy and RPG on

very small maps. Your task is to defeat the

spawning nasties on each level with a variety of

units at your disposal. There are no unit-produc-

tion facilities, just units. A coin is given to you

at the end of a level. These coins are used to

get new unit types or new unit skills. Defeating

the enemies requires a variety of units, which

the game provides sufficiently. The most use-

ful feature in the game is having the ability to

pause the game, allowing you to assign orders

to your units amidst the frantic battling. The

interface and controls are very simple to grasp

and do their job really well. Although it is noth-

ing spectacular, the game play is solid and it is

certain that any strategy fan will enjoy Kingdom

Elemental: Tactics.

45

Tube Twist: Quantum Flux Edition

When firing Tube Twist up for the first time, you can’t

help but wonder if you stumbled upon an alternative ver-

sion of the classic, The Incredible Machine. TIM was a

game in which you placed various gadgets and objects

across the screen to solve a certain goal, like getting a

ball into the basket or letting the cat catch the mouse.

 Tube Twist does indeed cite TIM as inspiration and

upon further investigation it seems like Tube Twist is a

simplified, streamlined version of TIM. Gone are the

cats, monkeys and tennis balls; in Tube Twist, your job is

to guide energy balls (aka Macrotrons) into their colour-

matching reactor tubes to extract the Macrotrons’ en-

ergy. In simple English, you must guide coloured balls

into their tubes by placing various pipes, accelerators,

and so on.

 While the concept seems a tad dull, Tube Twist is a

super solid puzzle game. If you have any propensity to-

ward any form of a puzzle game, you will definitely love

Tube Twist. As with any great puzzle game, it starts out

simple and gradually introduces you to new items ev-

ery few rounds, ramping up to something like orgasmic

puzzle pizza.

 With all the crazy ball accelerating, it can sometimes

get too crazy to follow a specific ball. A slow-motion

mode would’ve been great to track the balls progress in

order to see where you could perhaps change its course

next time around.

46

www.devmag.org.za

Gear Count:

OVER 9000!

	2 - Home
	3 - Editorial
	4 - News
	5 - Feature - Irrgheist
	9 - Review - Penny Arcade
	13 - Review - Chrono
	15 - Review - Instant Action
	17 - Dev - Design vs Programming
	23 - Dev - Design Documents
	26 - Dev - Mouth to Mic
	31 - Dev - Google App Engine
	38 - Dev - Blender
	42 - Tailpiece - Torque

	Button 60:
	Page 1: Off
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:

	gish:
	feature:
	blender:
	Button 48:
	Button 49:
	Button 50:
	Button 51:
	Button 52:
	Button 53:
	Button 54:
	Button 55:
	Button 56:
	Button 57:
	Button 58:
	Button 59:

